超像素分割技术发展情况梳理(superpixels segment)

转载 2015年11月21日 13:39:49

文章原地址http://blog.csdn.net/anshan1984/article/details/8918167

感谢原作者

超像素分割技术发展情况梳理(Superpixel Segmentation)

Sason@CSDN


当前更新日期:2013.06.10


一. 基于图论的方法(Graph-based algorithms):

1. Normalized cuts, 2000.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905,  2000.

T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In IEEE Computer Vision and Pattern Recognition (CVPR) 2005, 2005.

Project Home Page: 

http://www.cis.upenn.edu/~jshi/software/

http://www.timotheecour.com/software/ncut/ncut.html


2. Graph-based segmentation, 2004.

Pedro Felzenszwalb and Daniel Huttenlocher. Efficient graph-basedimage segmentation. International Journal of Computer Vision (IJCV),59(2):167–181, September 2004.

Project Home Page: http://cs.brown.edu/~pff/segment/


3. Graph cuts method, 2008.

Alastair Moore, Simon Prince, Jonathan Warrell, Umar Mohammed, andGraham Jones. Superpixel Lattices. IEEE Computer Vision and PatternRecognition (CVPR), 2008.

Project Home Page: http://www.cs.sfu.ca/~mori/research/superpixels


4. GCa10 and GCb10, 2010.

O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and supervoxels in an energy optimization framework. In European Conference on Computer Vision (ECCV), 2010.

Project Home Page: http://www.csd.uwo.ca/~olga/


5. Entropy Rate Superpixel Segmentation, 2011.

Ming-Yu Liu, Tuzel, O., Ramalingam, S. , Chellappa, R., Entropy Rate Superpixel Segmentation, CVPR,2011.

Project Home Page:http://www.umiacs.umd.edu/~mingyliu


6. Superpixels via Pseudo-Boolean Optimization, 2011.

Yuhang Zhang, Richard Hartley, John Mashford and Stewart Burn, Superpixels via Pseudo-Boolean Optimization, International Conference on Computer Vision (ICCV), 2011.

http://yuhang.rsise.anu.edu.au/yuhang/misc.html


二. 基于梯度下降的方法(Gradient-ascent-based algorithms):

1. Watershed,1991.

Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 13(6):583–598, 1991.


2. Mean Shift, 2002.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward featurespace analysis. IEEE Transactions on Pattern Analysis and MachineIntelligence, 24(5):603–619, May 2002.


3. Quick Shift, 2008

A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In European Conference on Computer Vision (ECCV), 2008.

Project Home Page: http://www.vlfeat.org/download.html


4. Turbopixel, 2009.

A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels using geometric flows. IEEETransactions on Pattern Analysis and Machine Intelligence (PAMI),2009.

Project Home Page: http://www.cs.toronto.edu/~babalex/


5. SLIC, 2010.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk , SLIC Superpixels, 2010.

Project Home Page: http://ivrg.epfl.ch/research/superpixels


6.SEEDS, 2012.

M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool.SEEDS: Superpixels Extracted via Energy-Driven Sampling, ECCV 2012.

Project Home Page:http://www.vision.ee.ethz.ch/~boxavier/seeds/




自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1

http://blog.csdn.net/anshan1984/article/details/8581225

图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)--计算机视觉专题2
http://blog.csdn.net/anshan1984/article/details/8657176

超像素分割技术发展情况梳理(Superpixel Segmentation)--计算机视觉专题3
http://blog.csdn.net/anshan1984/article/details/8918167



SLIC 超像素分割详解(三):应用

看过上面的介绍后,我们应该思考一下:分割好的超像素有什么用?怎么用?用到哪里? 首先,超像素可以用来做跟踪,可以参考卢湖川课题组发表在IEEE TIP上的《Robust superpixeltrack...
  • electech6
  • electech6
  • 2015年05月13日 10:46
  • 7523

SLIC超像素分割算法研究(代码可下载)

介绍SLIC超像素分割算法,给出其与openCV的接口,代码用VS2012和openCV2.4.9测试可运行。...
  • zhouxianen1987
  • zhouxianen1987
  • 2017年03月12日 01:21
  • 1900

超像素分割(Superpixel Segmentation)发展

转自:http://blog.csdn.NET/anshan1984/article/details/8918167最近实验需要用到超像素的一些算法,之前也有看过一下分水岭这个老算法,想着找找近年来的...
  • hduxiejun
  • hduxiejun
  • 2016年12月10日 21:41
  • 1311

SLIC超像素(superpixel)算法

SLIC算法是simple linear iterative cluster的简称,该算法用来生成超像素(superpixel)。 基本思想 算法大致思想是这样的,将图像从RGB颜色空间转换到CI...
  • u014568921
  • u014568921
  • 2015年03月24日 10:29
  • 13713

超像素分割技术发展情况梳理(Superpixel Segmentation)

一. 基于图论的方法(Graph-based algorithms): 1. Normalized cuts, 2000. Jianbo Shi and Jitendra Malik....
  • StefanSalvatore
  • StefanSalvatore
  • 2016年09月20日 19:45
  • 598

SLIC超像素分割详解(一):简介

SLIC超像素分割详解(一) 超像素概念是2003年Xiaofeng Ren提出和发展起来的图像分割技术,是指具有相似纹理、颜色、亮度等特征的相邻像素构成的有一定视觉意义的不规则像素块。它利用像素之间...
  • electech6
  • electech6
  • 2015年05月05日 22:15
  • 25973

SLIC图像超像素分割算法解析

转载自http://blog.chinaunix.net/uid-29431466-id-4831314.html 1 概述 SLIC 即simple linear iterative c...
  • cracehu
  • cracehu
  • 2015年09月17日 04:32
  • 7362

【转载】超像素分割与超像素合并/区域合并/多尺度分割

版权声明:本文非为博主原创文章,原文地址:http://blog.csdn.net/guzenyel/article/details/25769507。      最近两年,超像素分割方法非...
  • sinat_31802439
  • sinat_31802439
  • 2016年03月11日 13:17
  • 1229

超像素分割算法

SLIC原理与核心算法1.具体步骤:初始化聚类中心、迭代聚类、 后续加强联通 3)后续加...
  • gangshou
  • gangshou
  • 2015年05月21日 10:29
  • 1306

超像素分割(Superpixel Segmentation)发展

转自:http://blog.csdn.net/anshan1984/article/details/8918167 最近实验需要用到超像素的一些算法,之前也有看过一下分水岭这个老算法,想着找找...
  • Terry_o0o
  • Terry_o0o
  • 2016年01月05日 16:42
  • 3837
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:超像素分割技术发展情况梳理(superpixels segment)
举报原因:
原因补充:

(最多只允许输入30个字)