超像素分割技术发展情况梳理(superpixels segment)

转载 2015年11月21日 13:39:49

文章原地址http://blog.csdn.net/anshan1984/article/details/8918167

感谢原作者

超像素分割技术发展情况梳理(Superpixel Segmentation)

Sason@CSDN


当前更新日期:2013.06.10


一. 基于图论的方法(Graph-based algorithms):

1. Normalized cuts, 2000.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905,  2000.

T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decomposition. In IEEE Computer Vision and Pattern Recognition (CVPR) 2005, 2005.

Project Home Page: 

http://www.cis.upenn.edu/~jshi/software/

http://www.timotheecour.com/software/ncut/ncut.html


2. Graph-based segmentation, 2004.

Pedro Felzenszwalb and Daniel Huttenlocher. Efficient graph-basedimage segmentation. International Journal of Computer Vision (IJCV),59(2):167–181, September 2004.

Project Home Page: http://cs.brown.edu/~pff/segment/


3. Graph cuts method, 2008.

Alastair Moore, Simon Prince, Jonathan Warrell, Umar Mohammed, andGraham Jones. Superpixel Lattices. IEEE Computer Vision and PatternRecognition (CVPR), 2008.

Project Home Page: http://www.cs.sfu.ca/~mori/research/superpixels


4. GCa10 and GCb10, 2010.

O. Veksler, Y. Boykov, and P. Mehrani. Superpixels and supervoxels in an energy optimization framework. In European Conference on Computer Vision (ECCV), 2010.

Project Home Page: http://www.csd.uwo.ca/~olga/


5. Entropy Rate Superpixel Segmentation, 2011.

Ming-Yu Liu, Tuzel, O., Ramalingam, S. , Chellappa, R., Entropy Rate Superpixel Segmentation, CVPR,2011.

Project Home Page:http://www.umiacs.umd.edu/~mingyliu


6. Superpixels via Pseudo-Boolean Optimization, 2011.

Yuhang Zhang, Richard Hartley, John Mashford and Stewart Burn, Superpixels via Pseudo-Boolean Optimization, International Conference on Computer Vision (ICCV), 2011.

http://yuhang.rsise.anu.edu.au/yuhang/misc.html


二. 基于梯度下降的方法(Gradient-ascent-based algorithms):

1. Watershed,1991.

Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 13(6):583–598, 1991.


2. Mean Shift, 2002.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward featurespace analysis. IEEE Transactions on Pattern Analysis and MachineIntelligence, 24(5):603–619, May 2002.


3. Quick Shift, 2008

A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In European Conference on Computer Vision (ECCV), 2008.

Project Home Page: http://www.vlfeat.org/download.html


4. Turbopixel, 2009.

A. Levinshtein, A. Stere, K. Kutulakos, D. Fleet, S. Dickinson, and K. Siddiqi. Turbopixels: Fast superpixels using geometric flows. IEEETransactions on Pattern Analysis and Machine Intelligence (PAMI),2009.

Project Home Page: http://www.cs.toronto.edu/~babalex/


5. SLIC, 2010.

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk , SLIC Superpixels, 2010.

Project Home Page: http://ivrg.epfl.ch/research/superpixels


6.SEEDS, 2012.

M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool.SEEDS: Superpixels Extracted via Energy-Driven Sampling, ECCV 2012.

Project Home Page:http://www.vision.ee.ethz.ch/~boxavier/seeds/




自然图像抠图/视频抠像技术发展情况梳理(image matting, alpha matting, video matting)--计算机视觉专题1

http://blog.csdn.net/anshan1984/article/details/8581225

图像/视觉显著性检测技术发展情况梳理(Saliency Detection、Visual Attention)--计算机视觉专题2
http://blog.csdn.net/anshan1984/article/details/8657176

超像素分割技术发展情况梳理(Superpixel Segmentation)--计算机视觉专题3
http://blog.csdn.net/anshan1984/article/details/8918167



举报

相关文章推荐

超像素分割技术发展情况梳理(superpixels segment)

文章原地址http://blog.csdn.net/anshan1984/article/details/8918167 感谢原作者 超像素分割技术发展情况梳理(Superpixel Segmen...

超像素分割技术发展情况梳理(Superpixel Segmentation)

一. 基于图论的方法(Graph-based algorithms): 1. Normalized cuts, 2000. Jianbo Shi and Jitendra Malik....

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

超像素分割技术发展情况梳理(Superpixel Segmentation)--计算机视觉专题3

超像素分割技术发展情况梳理(Superpixel Segmentation) Sason@CSDN 当前更新日期:2013.06.10 一. 基于图论的方法(Graph-...
  • z_h_s
  • z_h_s
  • 2015-04-16 12:54
  • 1081

超像素分割技术发展情况梳理(Superpixel Segmentation)--计算机视觉专题3

超像素分割技术发展情况梳理(Superpixel Segmentation) Sason@CSDN 当前更新日期:2013.06.10 一. 基于图论的方法(Graph-...

《SLIC Superpixels》阅读笔记

最近导师让我看看超像素方面的文章,就找到了这一篇比较有名的《SLIC Superpixels》。下面是简单的翻译和一些我的理解: 摘要:超像素在计算机视觉领域越来越流行。但是,低计算量的算法却很少。我...
  • jkhere
  • jkhere
  • 2013-11-19 10:23
  • 10008

超像素分割(Superpixel Segmentation)发展

转自:http://blog.csdn.net/anshan1984/article/details/8918167 最近实验需要用到超像素的一些算法,之前也有看过一下分水岭这个老算法,想着找找...

超像素分割

Share Print SLIC Superpixels Abstract Superpixels are becoming increasingly po...
  • alaclp
  • alaclp
  • 2012-04-22 13:06
  • 8051

超像素区域合并

应广大学术同行的请求,将以往研究的一些代码进行整理,特发布一个学术版本的小软件工具:SuperpixelMerge,基本功能:实现超像素的区域合并 参数说明:共7个参数,分别为图像路径、超像素分割标...

超像素分割算法

SLIC原理与核心算法1.具体步骤:初始化聚类中心、迭代聚类、 后续加强联通 3)后续加...

SLIC超像素分割

SLIC超像素分割
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)