树状数组介绍(转)

原创 2007年10月14日 21:33:00
树状数组是一个查询和修改复杂度都为log(n)的数据结构,假设数组a[1...n],那么查询a[1] + …… + a[i] 的时间是log级别的,而且是一个在线的数据结构,支持随时修改某个元素的值,复杂度也为log级别。
来观察一下这个图:

令这棵树的结点编号为C1,C2……Cn。令每个结点的值为这棵树的值的总和,那么容易发现:
C1 = A1
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
……
C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
……
C2^n=a1+a2+….+a2^n

对于序列a,我们设一个数组C定义C[t] = a[t – 2^k + 1] + … + a[t],k为t在二进制下末尾0的个数。
K的计算可以这样:
2^k=t and (t xor (t-1))
以6为例
               (6)10=(0110)2
xor    6-1=(5)10=(0101)2
                        (0011)2
and          (6)10=(0110)2
                        (0010)2


这里有一个有趣的性质:
设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax,所以很明显:
Cn = A(n – 2^k + 1) + …… + An
算这个2^k有一个快捷的办法,定义一个函数如下即可:
int lowbit(int x){
return x & (x ^ (x – 1)); //return x & (-x);
}

当想要查询一个SUM(n)时,可以依据如下算法即可:
step1: 令sum = 0,转第二步;
step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步;
step3: 令n = n – lowbit(n),转第二步。


可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明:
n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。

那么修改呢,修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。所以修改算法如下(给某个结点i加上x):
step1: 当i > n时,算法结束,否则转第二步;
step2: Ci = Ci + x, i = i + lowbit(i)转第一步。

i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程。
//修改过程必须满足减法规则!



树状数组是一个可以很高效的进行区间统计的数据结构。在思想上类似于线段树,比线段树节省空间,编程复杂度比线段树低,但适用范围比线段树小。

以简单的求和为例。设原数组为a[1..N],树状数组为c[1..N],其中c[k] = a[k-(2^t)+1] + ... + a[k]。比如c[6] = c[5] + c[6]。也就是说,把k表示成二进制1***10000,那么c[k]就是1***00001 + 1***00010 + ... + 1***10000这一段数的和。设一个函数lowestbit(k)为取得k的最低非零位,容易发现,根据上面的表示方法,从a[1]到a[k]的所有数的总和即为sum[k] = c[k] + c[k-lowestbit(k)] + c[k-lowestbit(k)-lowestbit(k-lowestbit(k))] + ... 于是可以在logk的时间内求出sum[k]。当数组中某元素发生变化时,需要改动的c值是c[k],c[k+lowestbit(k)], c[k+lowestbit(k)+lowestbit(k+lowestbit(k))] ... 这个复杂度是logN (N为最大范围)

扩展到多维情况:以二维为例,用c[k1][k2]表示c[k1-(2^t1)+1][k2-(2^t2)+1] + ... + c[k1][k2]的总和。可以用类似的方法进行处理。复杂度为(logn)^k (k为维数)

树状数组相比线段树的优势:空间复杂度略低,编程复杂度低,容易扩展到多维情况。劣势:适用范围小,对可以进行的运算也有限制,比如每次要查询的是一个区间的最小值,似乎就没有很好的解决办法。

多维情况的几道题目:

POJ 2155 Matrix
URAL 1470 UFOs

其中POJ 2155是一道很不错的题目,表面上看,这题的要求似乎和树状数组的使用方法恰好相反,改变的是一个区间,查询的反而是一个点。实际上可以通过一个转化巧妙的解决。

首先对于每个数A定义集合up(A)表示{A, A+lowestbit(A), A+lowestbit(A)+lowestbit(A+lowestbit(A))...} 定义集合down(A)表示{A, A-lowestbit(A), A-lowestbit(A)-lowestbit(A-lowestbit(A)) ... , 0}。可以发现对于任何A<B,up(A)和down(B)的交集有且仅有一个数。

于是对于这道题目来说,翻转一个区间[A,B](为了便于讨论先把原问题降为一维的情况),我们可以把down(B)的所有元素的翻转次数+1,再把down(A-1)的所有元素的翻转次数-1。而每次查询一个元素C时,只需要统计up(C)的所有元素的翻转次数之和,即为C实际被翻转的次数。

实际实现时,由于只考虑奇偶,因此无须统计确切的翻转次数。另外,如果翻转up(A)和up(B+1),查询down(C),也是同样的效果。这种方法可以很容易地扩展到二维情况。比起线段树、四分树之类的常规思路,无论编程复杂度还是常数速度上都有很大优势。

PS:
int lowbit(int t)
{
    return t & (-t);
}
void ...()
{    ...
    pos+=lowbit(pos); //如果pos=0,那么这个地方pos将永远是0
}

php把数据集转换成树状结构,无限极分类生成树状

直接上代码,在onethink里面使用的转换树状结构 /** * 把返回的数据集转换成Tree * @param array $list 要转换的数据集 * @param string $p...
  • nanshan_hzq
  • nanshan_hzq
  • 2016年02月17日 15:00
  • 3445

php 数据集转换树、递归重组节点信息多维数组

将数据集转换成树 /** * 将返回的数据集转换成树 * @param array $list 数据集 * @param string $pk 主键 * @param st...
  • u012717614
  • u012717614
  • 2017年03月08日 15:01
  • 1581

json转树状结构(js)

转自:http://rockyuse.iteye.com/blog/1541308 /** * json格式转树状结构 * @param {json} json数据 * @...
  • chelen_jak
  • chelen_jak
  • 2014年03月15日 17:05
  • 14335

详细的数据结构延伸介绍(包括AC自动机SBT,伸展树,字典树,并查集,笛卡尔树,二叉堆,斐波那契堆,哈希表,红黑树,后缀树,后缀数组,树状数组,线段树,左偏树,斜堆)

  • 2010年12月12日 20:57
  • 19.07MB
  • 下载

树状数组资料

  • 2014年02月18日 22:56
  • 494KB
  • 下载

树状数组简介

  • 2013年08月16日 23:32
  • 3KB
  • 下载

二维树状数组

  • 2013年06月11日 10:48
  • 21KB
  • 下载

二维树状数组ppt

  • 2013年06月18日 13:29
  • 167KB
  • 下载

树状数组整理材料

  • 2013年01月11日 15:29
  • 259KB
  • 下载

树状数组PDF

  • 2012年11月06日 10:00
  • 159KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:树状数组介绍(转)
举报原因:
原因补充:

(最多只允许输入30个字)