树状数组介绍(转)

树状数组是一个查询和修改复杂度都为log(n)的数据结构,假设数组a[1...n],那么查询a[1] + …… + a[i] 的时间是log级别的,而且是一个在线的数据结构,支持随时修改某个元素的值,复杂度也为log级别。
来观察一下这个图:

令这棵树的结点编号为C1,C2……Cn。令每个结点的值为这棵树的值的总和,那么容易发现:
C1 = A1
C2 = A1 + A2
C3 = A3
C4 = A1 + A2 + A3 + A4
C5 = A5
C6 = A5 + A6
C7 = A7
C8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8
……
C16 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12 + A13 + A14 + A15 + A16
……
C2^n=a1+a2+….+a2^n

对于序列a,我们设一个数组C定义C[t] = a[t – 2^k + 1] + … + a[t],k为t在二进制下末尾0的个数。
K的计算可以这样:
2^k=t and (t xor (t-1))
以6为例
               (6)10=(0110)2
xor    6-1=(5)10=(0101)2
                        (0011)2
and          (6)10=(0110)2
                        (0010)2


这里有一个有趣的性质:
设节点编号为x,那么这个节点管辖的区间为2^k(其中k为x二进制末尾0的个数)个元素。因为这个区间最后一个元素必然为Ax,所以很明显:
Cn = A(n – 2^k + 1) + …… + An
算这个2^k有一个快捷的办法,定义一个函数如下即可:
int lowbit(int x){
return x & (x ^ (x – 1)); //return x & (-x);
}

当想要查询一个SUM(n)时,可以依据如下算法即可:
step1: 令sum = 0,转第二步;
step2: 假如n <= 0,算法结束,返回sum值,否则sum = sum + Cn,转第三步;
step3: 令n = n – lowbit(n),转第二步。


可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明:
n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的。

那么修改呢,修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有log(n)的祖先。所以修改算法如下(给某个结点i加上x):
step1: 当i > n时,算法结束,否则转第二步;
step2: Ci = Ci + x, i = i + lowbit(i)转第一步。

i = i +lowbit(i)这个过程实际上也只是一个把末尾1补为0的过程。
//修改过程必须满足减法规则!



树状数组是一个可以很高效的进行区间统计的数据结构。在思想上类似于线段树,比线段树节省空间,编程复杂度比线段树低,但适用范围比线段树小。

以简单的求和为例。设原数组为a[1..N],树状数组为c[1..N],其中c[k] = a[k-(2^t)+1] + ... + a[k]。比如c[6] = c[5] + c[6]。也就是说,把k表示成二进制1***10000,那么c[k]就是1***00001 + 1***00010 + ... + 1***10000这一段数的和。设一个函数lowestbit(k)为取得k的最低非零位,容易发现,根据上面的表示方法,从a[1]到a[k]的所有数的总和即为sum[k] = c[k] + c[k-lowestbit(k)] + c[k-lowestbit(k)-lowestbit(k-lowestbit(k))] + ... 于是可以在logk的时间内求出sum[k]。当数组中某元素发生变化时,需要改动的c值是c[k],c[k+lowestbit(k)], c[k+lowestbit(k)+lowestbit(k+lowestbit(k))] ... 这个复杂度是logN (N为最大范围)

扩展到多维情况:以二维为例,用c[k1][k2]表示c[k1-(2^t1)+1][k2-(2^t2)+1] + ... + c[k1][k2]的总和。可以用类似的方法进行处理。复杂度为(logn)^k (k为维数)

树状数组相比线段树的优势:空间复杂度略低,编程复杂度低,容易扩展到多维情况。劣势:适用范围小,对可以进行的运算也有限制,比如每次要查询的是一个区间的最小值,似乎就没有很好的解决办法。

多维情况的几道题目:

POJ 2155 Matrix
URAL 1470 UFOs

其中POJ 2155是一道很不错的题目,表面上看,这题的要求似乎和树状数组的使用方法恰好相反,改变的是一个区间,查询的反而是一个点。实际上可以通过一个转化巧妙的解决。

首先对于每个数A定义集合up(A)表示{A, A+lowestbit(A), A+lowestbit(A)+lowestbit(A+lowestbit(A))...} 定义集合down(A)表示{A, A-lowestbit(A), A-lowestbit(A)-lowestbit(A-lowestbit(A)) ... , 0}。可以发现对于任何A<B,up(A)和down(B)的交集有且仅有一个数。

于是对于这道题目来说,翻转一个区间[A,B](为了便于讨论先把原问题降为一维的情况),我们可以把down(B)的所有元素的翻转次数+1,再把down(A-1)的所有元素的翻转次数-1。而每次查询一个元素C时,只需要统计up(C)的所有元素的翻转次数之和,即为C实际被翻转的次数。

实际实现时,由于只考虑奇偶,因此无须统计确切的翻转次数。另外,如果翻转up(A)和up(B+1),查询down(C),也是同样的效果。这种方法可以很容易地扩展到二维情况。比起线段树、四分树之类的常规思路,无论编程复杂度还是常数速度上都有很大优势。

PS:
int lowbit(int t)
{
    return t & (-t);
}
void ...()
{    ...
    pos+=lowbit(pos); //如果pos=0,那么这个地方pos将永远是0
}
阅读更多
想对作者说点什么? 我来说一句

树状数组树状数组资料下载

2010年05月03日 411KB 下载

树状数组课件

2012年07月14日 2.01MB 下载

树状数组PDF

2012年11月06日 159KB 下载

树状数组的ppt(简单易懂)

2010年04月26日 610KB 下载

线段树 树状数组 数据结构

2011年07月24日 1.29MB 下载

树状数组的使用及原理

2011年08月30日 125KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭