matplotlib中Axes的用法札记

原创 2015年07月09日 21:52:42
import matplotlib.pyplot as plt

fig = plt.figure()
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title('axes title')
ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')
ax.text(3, 8, 'boxed italics text in data coords', style='italic',
        bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})
ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)
# ax.text(3, 2, unicode('unicode: Institut f\374r Festk\366rperphysik', 'latin-1'))
ax.text(0.95, 0.01, 'colored text in axes coords',
        verticalalignment='bottom', horizontalalignment='right',
        transform=ax.transAxes,
        color='green', fontsize=15)
ax.plot([2,3,4], [1,2,5], 'o')
ax.annotate('annotate', xy=(2, 1), xytext=(3, 4),
            arrowprops=dict(facecolor='black', shrink=0.05))
ax.axis([0, 10, 0, 11])
plt.show()

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

caffe安装笔记

http://caffe.berkeleyvision.org/install_yum.htmlhttp://tutorial.caffe.berkeleyvision.org/installatio...

Python--matplotlib绘图可视化知识点整理

转载自:Segment Fault 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找。 强烈推荐ipython 无论你工作在什么项目上,IPython都是值得推荐的。利用i...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

正则表达式

 正则表达式到底是什么东西? 字符是计算机软件处理文字时最基本的单位,可能是字母,数字,标点符号,空格,换行符,汉字等等。字符串是0个或更多个字符的序列。文...

论文查找地址

http://www.sciencedirect.com/ http://dir.scmor.com/google/

python数字图像处理(5):图像的绘制

实际上前面我们就已经用到了图像的绘制,如: io.imshow(img)   这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据。因此,...

中文分词笔记之二:隐马尔科夫模型

这里以中文分词为例: 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是...

Python matplotlib高级绘图详解

1. 前言前面我们介绍了使用matplotlib简单的绘图方法(见:Python应用matplotlib绘图简介 ) 但是想要完全控制你的图形,以及更高级的用法,就需要使用 pyplot 的接口显式...

激励函数简介 Tensorflow最简单的三层神经网络及matplotlib可视化 附激励函数常见类型

激励函数: 有人说翻译成“激活函数”(activation function)会更好,因为主要作用是分割数据,判断该“神经”是否被激活。比如说,当你判断面前的动物是否是一只猫的时候,你会从各个部分去...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)