3D数学 ---- 矩阵的更多知识(2)

转载 2012年03月29日 20:53:18

矩阵的逆

另外一种重要的矩阵运算是矩阵的求逆,这个运算只能用于方阵。

 

运算法则

方阵M的逆,记作M-1,也是一个矩阵。当MM-1相乘时,结果是单位矩阵。表示为公式9.6的形式:

并非所有的矩阵都有逆。一个明显的例子是若矩阵的某一行或列上的元素都为0,用任何矩阵乘以该矩阵,结果都是一个零矩阵。如果一个矩阵有逆矩阵,那么称它为可逆的或非奇异的。如果一个矩阵没有逆矩阵,则称它为不可逆的或奇异矩阵。奇异矩阵的行列式为0,非奇异矩阵的行列式不为0,所以检测行列式的值是判断矩阵是否可逆的有效方法。此外,对于任意可逆矩阵M,当且仅当v=0时,vM=0

M的”标准伴随矩阵“记作”adjM“,定义为M的代数余子式矩阵的转置矩阵。下面是一个例子,考虑前面给出的3x3阶矩阵M

计算M的代数余子式矩阵:

M的标准伴随矩阵是代数余子式矩阵的转置:

一旦有了标准伴随矩阵,通过除以M的行列式,就能计算矩阵的逆。

其表示如公式9.7所示:

例如为了求得上面矩阵的逆,有:

当然还有其他方法可以用来计算矩阵的逆,比如高斯消元法。很多线性代数书都断定该方法更适合在计算机上实现,因为它所使用的代数运算较少,这种说法其实是不正确的。对于大矩阵或某些特殊矩阵来说,这也许是对的。然而,对于低阶矩阵,比如几何应用中常见的那些低阶矩阵,标准伴随矩阵可能更快一些。因为可以为标准伴随矩阵提供无分支(branchless)实现,这种实现方法在当今的超标量体系结构和专用向量处理器上会更快一些。

矩阵的逆的重要性质:

 

几何解释

矩阵的逆在几何上非常有用,因为它使得我们可以计算变换的”反向“或”相反“变换 ---- 能”撤销“原变换的变换。所以,如果向量v用矩阵M来进行变换,接着用M的逆M-1进行变换,将会得到原向量。这很容易通过代数方法验证:


相关文章推荐

3D数学 ---- 矩阵的更多知识 (转)

转自http://blog.csdn.net/babety/archive/2009/09/05/4521911.aspx 4D向量和4x4矩阵不过是对3D运算的一种方便的记忆而已。4D齐次空间4D向...

3D数学 ---- 矩阵的更多知识(5)

一般仿射变换 3x3矩阵仅能表达3D中的线性变换,不能包含平移。经过4x4矩阵的武装后,现在我们可以构造包含平移在内的一般仿射变换矩阵了。例如: (1)绕不通过原点的轴旋转。 (2)沿不穿过原点...

3D数学 ---- 矩阵的更多知识(4)

4D向量和4x4矩阵不过是对3D运算的一种方便的记忆而已。   4D齐次空间 4D向量有4个分量,前3个是标准的x,y和z分量,第4个是w,有时称作齐次坐标。 为了理解标准3D坐标是怎样扩展到...

3d数学--矩阵更多知识

矩阵的行列式 在任意方阵中都存在一个标量,称作该方阵的行列式。   线性运算法则 方阵M的行列式记作|M|或“det M”,非方阵矩阵的行列式是未定义的。n x n阶矩阵的行列...

zz 3D数学 ---- 矩阵的更多知识(4)

zz自  http://www.cnblogs.com/flying_bat/archive/2008/01/17/1042697.html3D数学 ---- 矩阵的更多知识(4) 4D向量和4x4矩...

3D数学 ---- 矩阵的更多知识

矩阵的行列式在任意方阵中都存在一个标量,称作该方阵的行列式。 线性运算法则方阵M的行列式记作|M|或“det M”,非方阵矩阵的行列式是未定义的。n x n阶矩阵的行列式定义非常复杂,让我们先从2 x...

3D数学 矩阵和线性变换之切变

矩阵和线性变换之切变1. 什么是切变? 我们来看一幅图片。下面的图片,随着y增大,x的偏移会越来越大。这种类型的变换就叫切换。我们可以得到下图的公式x’ = x + sy。该公式转换成矩阵就得到了...

3D数学基础--矩阵基础

矩阵数学定义 1,矩阵就是以行和列形式组织的矩形数字块。形式上,向量可以定义为一维数组,而矩阵则可以定义为二维数组。因此,矩阵可以理解为由多个向量组成,类似二维数组由多个一维数组组成一样。2,矩阵的...

3d数学--矩阵

矩阵是3D数学的重要基础,它主要用来描述两个坐标系间的关系,通过定义一种运算而将一个坐标系中的向量转换到另一个坐标系中。在线性代数中,矩阵就是以行和列形式组织的矩形数字块,向量是标量的数组,矩阵是向量...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)