矩阵的逆的定义 :
M (M-1) = M-1M = I (单位矩阵)
左乘或者右乘得到的结果都为单位矩阵,互相为逆
逆的前提,首先矩阵必须是方阵;而且不是所有的方阵都又逆,例如行列式为零的方阵就没有逆。
矩阵的逆的最重要的几何意义 :
对一个空间点来说,乘上一个矩阵,这个空间点就作了相对应的几何变换;如果想要撤销这个变换,就需要乘上这个矩阵的逆。
代数余子式矩阵 :
标准伴随矩阵 (adjM) :
得到矩阵M的代数余子式矩阵后,将其转置,并得到新的矩阵。这个矩阵叫做原矩阵的标准伴随矩阵( adjM)。
在计算矩阵的逆的时候,用到标准伴随矩阵 。
求矩阵的逆 :M-1 =adjM / | M |
矩阵逆的重要性质 :
1、如果M是非奇异矩阵(行列式为零的矩阵叫做奇异矩阵),则该矩阵的逆的逆等于原矩阵
2、单位矩阵的逆是它本身,即 :I-1 = I
3、矩阵转置的逆等于它逆的转置,即 :(MT)-1 = (M-1)T
4、矩阵乘积的逆等于矩阵的逆的相反顺序的乘积,即 : (AB)-1 = B-1A-1;这个性质可以扩展到多个矩阵的情况
正交矩阵 :
方阵M与它的转置矩阵相乘得到的结果为单位矩阵,即 :M的逆等于M的转置(MT = M-1);即 : M正交 <=> M*MT = I