统计学习笔记(2)——感知机模型

本文介绍了感知机学习的基本原理,包括感知机模型、策略与算法。感知机是一种用于解决线性可分问题的学习方法,通过定义损失函数并使用梯度下降法进行优化。文章详细解释了感知机模型的构成要素及其如何进行预测,并探讨了感知机学习算法的原始形式与对偶形式。

       感知机学习旨在求出将训练数据集进行线性划分的分类超平面,为此,导入了基于误分类的损失函数,然后利用梯度下降法对损失函数进行极小化,从而求出感知机模型。感知机模型是神经网络和支持向量机的基础。下面分别从感知机学习的模型、策略和算法三个方面来介绍。

1. 感知机模型

      感知机模型如下:

f(x)= sign(w*x+b)

      其中,x为输入向量,sign为符号函数,括号里面大于等于0,则其值为1,括号里面小于0,则其值为-1。w为权值向量,b为偏置。求感知机模型即求模型参数w和b。感知机预测,即通过学习得到的感知机模型,对于新的输入实例给出其对应的输出类别1或者-1。

2. 感知机策略

      假设训练数据集是线性可分的,感知机学习的目标就是求得一个能够将训练数据集中正负实例完全分开的分类超平面,为了找到分类超平面,即确定感知机模型中的参数w和b,需要定义一个损失函数并通过将损失函数最小化来求w和b。

       这里选择的损失函数是误分类点到分类超平面S的总距离。输入空间中任一点x0到超平面S的距离为:

其中,||w||为w的L2范数。

        其次,对于误分类点来说,当-yi (wxi + b)>0时,yi=-1,当-yi(wxi + b)<0时,yi=+1。所以对误分类点(xi, yi)满足:

-yi (wxi +b) > 0

所以误分类点(xi, yi)到分类超平面S的距离是:

3. 感知机算法

       感知机学习问题转化为求解损失函数式(1)的最优化问题,最优化的方法是随机梯度下降法。感知机学习算法是误分类驱动的,具体采用随机梯度下降法。首先,任意选取一个超平面w0,b0,然后用梯度下降法不断极小化目标函数式(1)。极小化的过程不是一次使M中所有误分类点的梯度下降,而是一次随机选取一个误分类点使其梯度下降。

       损失函数L(w,b)的梯度是对w和b求偏导,即:

其中,(0<<=1)是学习率,即学习的步长。综上,感知机学习算法如下:

        这种算法的基本思想是:当一个实例点被误分类,即位于分类超平面错误的一侧时,则调整w和b,使分类超平面向该误分类点的一侧移动,以减少该误分类点与超平面的距离,直到超平面越过该误分类点使其被正确分类为止。

       需要注意的是,这种感知机学习算法得到的模型参数不是唯一的,它会由于采用不同的参数初始值或选取不同的误分类点,而导致解不同。为了得到唯一的分类超平面,需要对分类超平面增加约束条件,线性支持向量机就是这个想法。另外,当训练数据集线性不可分时,感知机学习算法不收敛,迭代结果会发生震荡。而对于线性可分的数据集,算法一定是收敛的,即经过有限次迭代,一定可以得到一个将数据集完全正确划分的分类超平面及感知机模型。

       以上是感知机学习算法的原始形式,下面介绍感知机学习算法的对偶形式,对偶形式的基本想法是,将w和b表示为实例xi和标记yi的线性组合形式,通过求解其系数而求得w和b。对误分类点(xi, yi)通过


所以,感知机学习算法的对偶形式如下:



笔记来源于《统计学习方法》——李航著
### 2D Gaussian Splatting 的概念 2D Gaussian Splatting 是一种用于高效表示和渲染三维场景的技术,其核心思想是通过二维高斯分布(2D Gaussians)来近似三维空间中的物体表面[^2]。相比传统的基于体素或网格的方法,2DGS 提供了一种更加紧凑且快速的方式来进行场景建模和渲染。 --- ### 2D Gaussian Splatting 的实现方法 #### 数据结构设计 2D Gaussian Splatting 使用的是 **定向椭圆盘** 来作为基本单元,这些单元可以看作是对三维场景的一种简化表示形式。每一个 2D 高斯分布由以下几个参数定义: - 中心位置 $(\mu_x, \mu_y)$ 表示该高斯分布在图像平面上的位置。 - 协方差矩阵 $\Sigma$ 描述了形状和方向的信息。 - 不透明度 ($\alpha$) 控制可见程度。 - RGB颜色值决定视觉效果。 这种数据结构的设计使得它能够很好地适应现代图形处理硬件的能力,在GPU上执行高效的并行运算成为可能[^4]。 #### 渲染过程优化 在实际渲染过程中,2DGS 利用了精确的光线与椭圆形基元之间的相交测试技术 ("ray-splat intersection") ,从而实现了比传统体积渲染更高的精度以及更低的时间复杂度。具体来说: 1. 对于每一条从相机出发到达屏幕像素点的视线(ray),找到与其发生碰撞的所有splat; 2. 计算每个被击中的splat对该特定像素贡献的颜色强度; 3. 将所有相关联的结果按照一定规则融合起来形成最终画面输出。 这种方法避免了由于视角变化而导致的传统3D GS可能出现的问题——即当观察角度改变时产生的深度排序不连贯现象。 --- ### 应用场景分析 #### 新视图合成 得益于其强大的表达能力和优秀的性能表现,2D Gaussian Splatting 特别适合应用于虚拟现实(VR)/增强现实(AR)领域内的实时动态环境创建任务之中。例如,在电影制作或者游戏开发当中,可以通过采集少量真实世界的图片资料之后构建完整的沉浸式体验场所。 #### 自动驾驶感知系统改进 另外一方面,在自动驾驶汽车所依赖的各种传感器获取的数据基础上运用此算法还可以进一步提升对于周围障碍物识别的速度与准确性。因为相较于其他类型的模型而言,采用2D GS方式不仅可以减少存储需求量还能加快推理速度,这对于需要即时响应的安全关键型应用尤为重要[^3]。 #### SLAM 系统升级 同时,在同步定位与地图绘制(SLAM)研究方面也有着广泛的应用前景。借助于2D Gaussian Splatting 技术的优势特性可以帮助机器人更有效地理解其所处的空间布局情况,并据此做出合理的行为决策。 ```python import numpy as np def render_2d_gaussian(center, covariance_matrix, alpha, color): """ Simulates rendering a single 2D Gaussian splat. Parameters: center (tuple): The mean position of the Gaussian distribution on image plane. covariance_matrix (np.ndarray): Covariance matrix defining shape and orientation. alpha (float): Opacity value controlling visibility level. color (list or tuple): RGB values specifying appearance characteristics. Returns: rendered_image (np.ndarray): A synthetic representation showing how this element contributes visually within scene context. """ # Placeholder implementation details omitted here... pass ``` ---
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值