模线性方程组

先说一个故事
说秦末,刘邦的将军韩信带领1500名士兵经历了一场战斗,战死四百余人。韩信为了清点人数让士兵站成三人一排,多出来两人;站成五人一排,多出来四人;站成七人一排,多出来六人。韩信立刻就知道了剩余人数为1049人。


这就是著名的韩信点兵的故事,化成数学模型就是:
韩信是为了计算的是士兵的人数,那么我们设这个人数为x。三人成排,五人成排,七人成排,即x mod 3, x mod 5, x mod 7。也就是说我们可以列出一组方程:
x mod 3 = 2
x mod 5 = 4
x mod 7 = 6

将这个方程组推广到一般形式:给定了n组除数m[i]和余数r[i],通过这n组(m[i],r[i])求解一个x,使得x mod m[i] = r[i]
这就是模线性方程组


一开始就直接求解多个方程不是太容易,我们从n=2开始递推:
已知:

x mod m[1] = r[1]
x mod m[2] = r[2]

根据这两个式子,我们存在两个整数k[1],k[2]:

x = m[1] * k[1] + r[1]
x = m[2] * k[2] + r[2]

由于两个值相等,因此我们有:

    m[1] * k[1] + r[1] = m[2] * k[2] + r[2]
=>  m[1] * k[1] - m[2] * k[2] = r[2] - r[1]

由于m[1],m[2],r[1],r[2]都是常数,若令A=m[1],B=m[2],C=r[2]-r[1],x=k[1],y=k[2],则上式变为:Ax + By = C。
这就转换成扩展的欧几里得算法

可以先通过gcd(m[1], m[2])能否整除r[2]-r[1]来判定是否存在解。
假设存在解,则我们通过扩展欧几里德求解出k[1],k[2]。
再把k[1]代入x = m[1] * k[1] + r[1],就可以求解出x。
同时我们将这个x作为特解,可以扩展出一个解系:
X = x + k*lcm(m[1], m[2]) k为整数
lcm(a,b)表示a和b的最小公倍数。其求解公式为lcm(a,b)=a*b/gcd(a,b)。
将其改变形式为:
X mod lcm(m[1], m[2]) = x。
令M = lcm(m[1], m[2]), R = x,则有新的模方程X mod M = R。
此时,可以发现我们将x mod m[1] = r[1],x mod m[2] = r[2]合并为了一个式子X mod lcm(m[1], m[2]) = x。满足后者的X一定满足前两个式子。
每两个式子都可以通过该方法化简为一个式子。那么我们只要重复进行这个操作,就可以将n个方程组化简为一个方程,并且求出一个最后的解了。
最后代码就是

#include <iostream>
#include <cstdio>
#define N 1010
using namespace std;
long long m[N], r[N];
int n;
long long x, y;
long long gcd(long long a, long long b){
    if (!b) return a;
    return gcd(b, a%b);
}
pair<long long, long long > extend_gcd(long long a, long long b){
    pair<long long, long long> tmp;
    if (a%b == 0){
        return pair<long long , long long>(0, 1);
    }
    tmp = extend_gcd(b, a%b);
    long long tmp_x = tmp.first, tmp_y = tmp.second;
    x = tmp_y;
    y = tmp_x-(a/b)*tmp_y;
    return pair<long long , long long>(x, y);
}
long long solve(){
    long long M = m[0], R = r[0];
    for (int i = 1; i < n; i++){
        long long d = gcd(M, m[i]);
        long long c = r[i] - R;
        if (c%d != 0){
            return -1;  // 无解的情况
        }
        pair<long long, long long> t = extend_gcd(M/d, m[i]/d); // 扩展欧几里德计算
        t.first = (c/d*t.first)%(m[i]/d);   // 扩展解系
        R = R+t.first*M;        
        M = M/d*m[i];   // 求解lcm(M, m[i])
        R %= M;     // 求解合并后的新R,同时让R最小
    }
    if (R < 0){
         R += M;
    }
    return R;
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("1.txt", "r", stdin);
#endif
    int i, j, k;
    scanf("%d", &n);
    for (i = 0; i < n; i++){
        scanf("%d%d", &m[i], &r[i]);
    }
    cout << solve();
    return 0;
}
  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值