关闭

hdu1507(二分匹配)

35人阅读 评论(0) 收藏 举报
分类:

大意是求最多能有多少组白块,相邻的两块为一组,所以这道题目的两个集合可以设定为横纵坐标之和为奇数的集合和横纵坐标之和为偶数的集合,然后建图,一个点只能与之上下左右的点相连,所以只需考虑这四个方向就可以了。

这里写图片描述“`

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
int n, m, k;
int d[4][2] = {-1,0,1,0,0,-1,0,1};
void hungarian();
bool dfs(int u);
bool judge(int xx, int yy);
int matching[13030], used[13030], plan[13030];
vector <int> g[13030];
int main()
{
    while(scanf("%d%d", &n, &m), n != 0 && m != 0){
    scanf("%d", &k);
    memset(g, 0, sizeof(g));
    memset(plan, 0,  sizeof(plan));
    for(int i = 0; i < k; i++)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        plan[(x - 1) * m + y] = 1;
    }
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <= m; j++)
        {
            if(!plan[(i - 1) * m + j] && (i + j) % 2)
            {
                for(int q = 0; q < 4; q++)
                {
                    int xx = i + d[q][0];
                    int yy = j + d[q][1];
                    if(judge(xx, yy))
                    {
                        g[(i - 1) * m + j].push_back((xx - 1) * m + yy);
                    }

                }
            }
        }
    }
    hungarian();
    }
}
bool judge(int xx, int yy)
{
    if(plan[(xx - 1) * m + yy] == 0 && xx > 0 && xx <= n && yy > 0 && yy <= m)
        return true;
    return false;
}
void hungarian()
{
    int ans = 0;
    memset(matching, -1, sizeof(matching));
    for(int i = 1; i <= n*m; i++)
    {
        memset(used, 0, sizeof(used));
        if(dfs(i))
            ans++;
    }
    printf("%d\n", ans);
    for(int i= 1; i <= n * m; i++)
    {
        int x1, x2, y1, y2;
        if(matching[i] != -1)
        {
            if(!(matching[i] % m))
            {
                x1 = matching[i] / m;
                y1 = m;
            }
            else
            {
                x1 = matching[i] / m + 1;
                y1 = matching[i] % m;
            }
            if(!(i % m))
            {
                x2 = i / m;
                y2 = m;
            }
            else
            {
                x2 = i / m + 1;
                y2 = i % m;
            }
            printf("(%d,%d)--(%d,%d)\n",x1,y1,x2,y2);
        }
    }
}
bool dfs(int u)
{
    for(int i = 0; i < g[u].size(); i++)
    {
        int t = g[u][i];
        if(!used[t])
        {
            used[t] = 1;
            if(matching[t] == -1 || dfs(matching[t]))
            {
                matching[t] = u;
                return true;
            }
        }
    }
    return false;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1228次
    • 积分:230
    • 等级:
    • 排名:千里之外
    • 原创:23篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类