【计算几何各种知识点总结】[不定期补充]

本文详细总结了计算几何中的关键知识点,包括精度控制、点与图形的位置关系、线段相交和两圆相交面积的计算。通过叉积判断点在线段上、线段相交以及两圆相交的面积计算,深入探讨了计算几何的基本原理和实用技巧。

计算几何模板总结 :

http://blog.csdn.net/qq_33184171/article/details/51124611

精度控制

尽量不要用除法,三角函数,强制类型转换(尤其是double转int)等操作,否则精度损失比较大 。
const double PI = acos(-1.0);
const double EPS = 1e-8;
对小数点后1位 取整 的方法为 ±1 (+1位进位 -1为退位)
eg:8(double)=7.9999999999….;
8(int)=8;
int(8(double))=7; !!!!!!
这样精度损失就大了~~~~

杂点

精度问题

1.在用1e-n判断相等的时候不是n越大越好 要选择合适的 ,一般为6/8/9/10
2.判断两条线段距离大小关系的时候有平方倍进行比较。
3.未完待续。。。

点与其他图形的位置关系

点与直线的位置关系

首先明确点与直线的位置关系只有两种:
1.点在直线上
这里写图片描述
2.点不在直线上
这里写图片描述

在这里只要用叉积判断就可以了
以上图为例只需满足向量 ab×ac=0 即可
如果叉积等于0 则说明两向量共线 所以点在直线上
如果叉积不为0 则说明点不在直线上

点与线段的关系

知道了如何判断点与直线的位置关系在来判断点与线段的位置关系就容易多了
跟直线类似点与线段也只有两种位置关系:
1.点在线段上
2.点不在线段上

如果点在线段上则需满足以下两种情况:
1.点在线段所在的直线上。
2.点在以线段为对角线的矩形内。
前者很好理解,而后者则确保点不在线段的两端延长线上。
所以除了判断叉积还要判断坐标关系
以下图为例
这里写图片描述
很容易得出
应满足以下结论

c.x> min(a.x,b.x);
c.x< max(a.x,b.x);
c.y> min(a.y,b.y);
c.y< max(a.y,b.y);
这样就满足了点在矩形内
当然不能忘记用叉积判断;;;

点与三角形的内外

先要说明,当点在三角形边上的时候视为点在三角形的内部
在这里我们运用面积关系来判断点在三角形的内外
这里写图片描述这里写图片描述

观察S△dab+S△dbc+S△dac与S△abc的大小关系
观察上两图不难发现当点在三角形内是S△dab+S△dbc+S△dac是相等于S△abc的
而点在三角线外的时候
S△dab+S△dbc+S△dac是大于S△abc的

所以只要计算出两式的大小关系即可
Ps:这里求面积运用的为叉乘, ab×ac 就是 延伸出去的平行四边形的面积
Sabc=ab×ac2

判断大小关系的时候不用除以2 直接判断即可 且更加精确

线段相交

判断两线段是否相交

判断两个线段是否相交,要先想一下两条线段之间都有什么样的位置关系。
1.相离
两线段相离
2.相交

目录 ㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值