计算几何基本知识

这篇博客介绍了计算几何的基础概念,包括矢量运算、线段与直线的相交判断、点在线段上的判断以及凸包算法,如Graham扫描法和Jarvis步进法。此外,还讨论了如何判断点是否在多边形内以及计算线段上的整数点个数,给出了实际应用案例。
摘要由CSDN通过智能技术生成

矢量的概念

线段:设A(x1,y1),B(x2,y2)是平面上任意两点,线段AB上的任一点C(x,y)满足
x=\lambdax1+(1-\lambda) x2

y=\lambday1+(1-\lambda) y2     (0<=\lambda<=1) 

给定两个向量\underset{OA}{\rightarrow}\underset{OB}{\rightarrow},以O、A、B、A+B为顶点的平行四边形面积:

\underset{OA}{\rightarrow}*\underset{OB}{\rightarrow}=x1y2-x2y1=-(\underset{OB}{\rightarrow}*\underset{OA}{\rightarrow})

矢量加减法

设二维矢量P=(x1,y1),Q=(x2,y2)。矢量加法的定义为:P+Q=(x1+x2,y1+y2)。

矢量加法的几何意义是以向量P、Q为邻边的平行四边形的对角线

矢量减法定义为:P-Q=(x1-x2,y1-y2)

矢量叉积  

矢量叉积: \underset{OA}{\rightarrow}*\underset{OB}{\rightarrow}定义为以O,A,B,A+B为顶点的平行四边形的带符号的面积

叉积性质(可用右手法则):

                >0  \underset{OB}{\rightarrow}\underset{OA}{\rightarrow}的逆时针方向(四指指向\underset{OA}{\rightarrow}方向,握向\underset{OB}{\rightarrow},大拇指指向屏幕外。)

\underset{OA}{\rightarrow}*\underset{OB}{\rightarrow}: =0  O,A,B共线

                <0  \underset{OB}{\rightarrow}\underset{OA}{\rightarrow}的顺时针方向(四指指向\underset{OA}{\rightarrow}方向,握向\underset{OB}{\rightarrow},大拇指指向屏幕内。)

任意三点A,B,C组成的向量\underset{AB}{\rightarrow}\underset{AC}{\rightarrow}的叉积:A(x1,y1),B(x3,y3),C(x2,y2)

\underset{AB}{\rightarrow}*\underset{AC}{\rightarrow}=(x3-x1)*(y2-y1)-(x2-x1)*(y3-y1)

折线段的拐向判断

折线段的拐向判断:左转、右转:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值