矢量的概念
线段:设A(x1,y1),B(x2,y2)是平面上任意两点,线段AB上的任一点C(x,y)满足
x=x1+(1-) x2
y=y1+(1-) y2 (0<=<=1)
给定两个向量和,以O、A、B、A+B为顶点的平行四边形面积:
*=x1y2-x2y1=-(*)
矢量加减法
设二维矢量P=(x1,y1),Q=(x2,y2)。矢量加法的定义为:P+Q=(x1+x2,y1+y2)。
矢量加法的几何意义是以向量P、Q为邻边的平行四边形的对角线
矢量减法定义为:P-Q=(x1-x2,y1-y2)
矢量叉积
矢量叉积: *定义为以O,A,B,A+B为顶点的平行四边形的带符号的面积
叉积性质(可用右手法则):
>0 在的逆时针方向(四指指向方向,握向,大拇指指向屏幕外。)
*: =0 O,A,B共线
<0 在的顺时针方向(四指指向方向,握向,大拇指指向屏幕内。)
任意三点A,B,C组成的向量、的叉积:A(x1,y1),B(x3,y3),C(x2,y2)
*=(x3-x1)*(y2-y1)-(x2-x1)*(y3-y1)
折线段的拐向判断
折线段的拐向判断:左转、右转: