机器学习实战的坑实战太多了,这里把贝叶斯这一章的坑都将一下。
首先是有个报错'gbk' codec can't decode byte 0xae in position 199: illegal multibyte sequence,解决办法找到你的email\ham\23.txt,zh找到SciFinance?把问号换成空格即可
报错2:'range' object doesn't support item deletion这里把你的trainingSet = range(50)变成trainingSet=list(range(50))就OK了
下来给出超级详细的代码注释:
'''
Created on Oct 19, 2010
@author: Peter
'''
from numpy import *
import operator
import codecs
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
#统计列表中所有不重复的单词,词汇袋
def createVocabList(dataSet):
#定义词汇集
vocabSet = set([])
#遍历数据集
for document in dataSet:
#把每个文档合并到词汇袋中
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
#把单词转换成向量,用词袋模型,计算词出现的次数
#inputSet是输入语句
#vocalList是词袋(训练数据集中出现过的单词)
#returnVec是对比语句会让词袋后记录出现的单词的列表
def setOfWords2Vec(vocabList, inputSet):
#创建一个空的单词列
returnVec = [0]*len(vocabList)
#遍历数据集单词
for word in inputSet:
#存在单词在词袋中则
if word in vocabList:
#index用于找到第一个与之匹配的下标
returnVec[vocabList.index(word)] = 1
else:
print ("the word: %s is not in my Vocabulary!" % word)
return returnVec
#朴素贝叶斯分类训练函数
#trainMatrix是训练矩阵
#trainMatrix由来************
#训练数据集,训练标签集=bayes.loadDataSet()
#词汇袋=bayes.createVocabList(训练数据集)
#初始化训练矩阵
#for 文档 in 训练数据集:(数据集里面有很多文档)
# 训练矩阵.append(bayes.setOfWords2Vec(词袋,文档))
#出来的训练矩阵就是每个文档中出现在词袋中的单词
#trainMatrix类似这样([0,1,1,0],[1,0,1,0]...)
def trainNB0(trainMatrix,trainCategory):
#计算文档的数目
numTrainDocs = len(trainMatrix)
#计算词袋单词的数目
numWords = len(trainMatrix[0])
#计算类别的概率 abusive的文档站文档总数的百分比
pAbusive = sum(trainCategory)/float(numTrainDocs)
#初始化计数器,1行*numWords列
#p0是not abusive p1是abusive
#为什么是不是0矩阵?
#因为如果是0的话,按照贝叶斯公式,p(W0|1)*p(W1|1)
#如果任意概率为0则全为0所以初始值为1
#同时下面分母初始化2
p0Num = ones(numWords); p1Num = ones(numWords)
#初始化分母
p0Denom = 2.0; p1Denom = 2.0
#遍历数据集中每个文档
for i in range(numTrainDocs):
#如果这文档是abusive类的计算它的abusive比例
if trainCategory[i] == 1:
#储存每个词在abusive下出现次数
p1Num += trainMatrix[i]
#储存abusive词的总数目
p1Denom += sum(trainMatrix[i])
else:
#储存每个词在not abusive的出现次数
p0Num += trainMatrix[i]
#储存not abusive词的总数目
p0Denom += sum(trainMatrix[i])
#使用log是为了防止数据向下溢出
# 计算abusive下每个词出现的概率
p1Vect = log(p1Num/p1Denom) #change to log()
# 计算not abusive下每个词出现的概率
p0Vect = log(p0Num/p0Denom) #change to log()
#返回词出现的概率和文档为abusice的概率
return p0Vect,p1Vect,pAbusive
#贝叶斯分类
#第一个参数是要被训练的向量
#后面三个参数是根据上面一个函数处理训练样本后得到的参数
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
#计算abusive的概率
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
#计算not abusive概率
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
#看哪个概率大
if p1 > p0:
return 1
else:
return 0
#计算文档单词在某个词袋中出现的次数
# 把单词转换成向量,用对比已经有得词袋,计算词出现的次数
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
#测试贝叶斯
def testingNB():
#加载数据集
listOPosts,listClasses = loadDataSet()
#创建词汇袋
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
#输入字符串,输出单词列表
def textParse(bigString):
import re
listOfTokens = re.split(r'\W*', bigString)
#返回小写单词列表
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
#垃圾邮寄过滤测试函数
def spamTest():
# 定义docList文档列表,classList类别列表,fullText所有文档词汇
docList=[]; classList = []; fullText =[]
#遍历文件夹内文件
#我们也可以用这个来实现
# doclist=listdir('trainingDigits')
# num=len(doclist)
# for i in range(1,num)
for i in range(1,26):
# 定义并读取垃圾邮件文件的词汇分割列表
wordList = textParse(open('email/spam/%d.txt' % i).read())
# 将词汇列表加到文档列表中
docList.append(wordList)
# 将所有词汇列表汇总到fullText中
fullText.extend(wordList)
# 文档类别为1,spam
classList.append(1)
# 读取非垃圾邮件的文档
wordList = textParse(open('email/ham/%d.txt' % i).read())
# 添加到文档列表中
docList.append(wordList)
# 添加到所有词汇列表中
fullText.extend(wordList)
# 类别为0,非垃圾邮件
classList.append(0)
# 创建词汇列表
vocabList = createVocabList(docList)
# 定义训练集的索引和测试集
trainingSet = list(range(50)); testSet=[]
# 随机的选择10个作为测试集
for i in range(10):
#随机索引
randIndex = int(random.uniform(0,len(trainingSet)))
#将随机选择的文档加入测试集
testSet.append(trainingSet[randIndex])
#从训练集中删除随机选择的文档
del(trainingSet[randIndex])
#定义训练集的矩阵和类别
trainMat=[]; trainClasses = []
#遍历训练集,求先验概率和条件概率
for docIndex in trainingSet:
#将词汇列表变成向量放到trainList中
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
#添加训练集的类标签
trainClasses.append(classList[docIndex])
#计算先验概率,条件概率
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
#对测试集分类
for docIndex in testSet: #classify the remaining items
#将测试集向量化
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
#对测试数据进行分类
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
#错误的话错误计数加一
errorCount += 1
print( "classification error",docList[docIndex])
print ('the error rate is: ',float(errorCount)/len(testSet))
#return vocabList,fullText