数论——(扩展)欧几里得算法辨析

欧几里得算法

欧几里得算法链接:传送门
欧几里得算法就是我们通常说的“辗转相除法”

inline int gcd(int a,int b)
{
    return b==0 ? gcd(y,x%y);
}

扩展欧几里得

扩展欧几里得是用来求:已知 (a,b) ( a , b ) 时,求解一组 (p,q) ( p , q ) ,使得 p×a+q×b=gcd(a,b) p × a + q × b = g c d ( a , b )
(根据裴蜀等式,一定存在整数解:裴蜀等式的介绍在靠后的位置
这里要纠正一下:扩欧不一定是用来求逆元的!!!当 a a b互质的时候才是用来求逆元。
证明 by b y 《数学一本通》

gcd(a,b)=gcd(b,amodb) g c d ( a , b ) = g c d ( b , a mod b )
p×a+q×b=gcd(a,b)=gcd(b,amodb)=p×b+q×amodb=q×b+q×(aa/b×b)=q×a+(pa/b×q)×b p × a + q × b = g c d ( a , b ) = g c d ( b , a mod b ) = p × b + q × a mod b = q × b + q × ( a − a / b × b ) = q × a + ( p − a / b × q ) × b
所以我们就把 a,b a , b 的线性组合化简为 b,amodb b , a mod b 的线性组合。
根据前面的结论, a a b都在减小,如果 b b 减小到0时候,就可以得出p=1,q=0。然后递归回去就可以求出最终的 pq p 、 q 了。

这里我们给出来自一位大佬的解释:
传送门

现在我们知道了 a 和 b 的最大公约数是 gcd ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:
x = x0 + (b/gcd)*t
y = y0 – (a/gcd)*t
为什么不是:
x = x0 + b*t
y = y0 – a*t
这个问题也是在今天早上想通的,想通之后忍不住喷了自己一句弱逼。那是因为:
b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?
注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚
现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。
我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd
当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?
假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?
我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:
gcd = b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1)
对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?
这里:
x = y1
y = x1 – a/b*y1

给出代码:

int extended_gcd(int a,int b,int &x,int &y)
{
    int ret,tmp;
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    ret=extended_gcd(b,a%b,x,y);
    tmp=x;
    x=y;
    y=tmp-a/b*y;
    return ret;
}

扩展欧几里得求解线性方程

根据前面的“裴蜀等式”,我们知道方程 a×x+b×y=c a × x + b × y = c 一定有解的充分必要条件是 gcd(a,b)|c g c d ( a , b ) | c 。于是乎,我们求这个方程的解的步骤就是求出 a×x+b×y=gcd(a,b) a × x + b × y = g c d ( a , b ) 的一组解,然后两边同除以 gcd(a,b) g c d ( a , b ) ,乘上 c c 就可以了。

再特殊地,如果a b b 互质,且x0y0 a×x+b×y=c a × x + b × y = c 的一组解,那么这方程的任意一个解都可以表示为 x=x0+b×t,y=y0a×t x = x 0 + b × t , y = y 0 − a × t t t 取任何整数都成立。
代码实现:

int extended_gcd(int a,int b,int &x,int &y)
{
    int ret,tmp;
    if(!b)
    {
        x=1;
        y=0;
        return a;
    }
    ret=extended_gcd(b,a%b,x,y);
    tmp=x;
    x=y;
    y=tmp-a/b*y;
    return ret;
}
bool linearEquation(int a,int b,int& x,int& y)
{
    int d=Extended_gcd(a,b,x,y);
    if(c%d)return false;
    int k=c/d;
    x*=k;
    y*=k;
    return true;
}

扩欧求逆元

逆元是什么?逆元在这里
a×x1(modb) a,b a , b 互质,我们就说 x x a的逆元,记为 a1 a − 1
根据逆元的定义,我们可以转化为求这个方程 a×x+b×y=1 a × x + b × y = 1 ,用扩欧求解;
代码:

void exgcd(int a,int b,int c,int &x,int &y)
{
    int ret,tmp;
    if(a==0)
    {
        x=0;
        y=c/b;
        return;
    }
    int tx,ty;
    exgcd(b%a,a,c,tx,ty);
    x=ty-(b/a)*tx;
    y=tx;
    return;
}

exgcd其他风格

结构体风格

long long a,b;
struct Triple
{
    long long d,x,y;
};
Triple exgcd(long long a,long long b)
{
    if(b==0)
    {
        return (Triple){a,1,0};
    }
    Triple t=exgcd(b,a%b);
    return (Triple){t.d,t.y,t.x-a/b*t.y};
}

单函数exgcd

int x,y;
void exgcd(int a,int b,int c,int &x,int &y)
{
    if(a==0)
    {
        x=0;
        y=c/b;
        return;
    }
    else
    {
        int tx,ty;
        exgcd(b%a,a,c,tx,ty);
        x=ty-(b/a)*tx;
        y=tx;
        return;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值