数论学习二之——扩展欧几里得算法

在我们学习扩展欧几里得算法(下面简称扩欧)之前呢,我们先了解一下什么是欧几里得算法,当然很多人之前应该都接触过,但是还是讲一下吧,所谓欧几里得算法,就是 g c d gcd gcd(也叫辗转相除法),当我们求两个数的最大公约数的时候, g c d gcd gcd毫无疑问是最优的算法。

下面给出欧几里得的算法公式以及相应的代码:
欧几里得

int gcd(int a, int b)
{
	return b ? gcd(b, a % b) : a;
}

那我们现在开始正式讲扩欧,我们给出一个线性组合 a x + b y = c ax+by = c ax+by=c当我们需要去求解这个表达式的 x , y x,y xy的值是,就要用到扩欧了。
下面给点定理:
B e z o u t Bezout Bezout定理:如果 a a a b b b都是整数,则有整数 x x x y y y使得 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)
我们可以得出一个推论:整数 a a a b b b互素当且仅当存在整数 x x x y y y使得 a x + b y = 1 ax+by=1 ax+by=1

对于不定方程 a x + b y = c ax+by=c ax+by=c,如果 c c c不是 g d c ( a , b ) gdc(a,b) gdc(a,b)的倍数,则不定方程无解,否则用扩欧的算法进行求解。

下面我们给出扩展欧几里得算法的模板:

int ex_gcd(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int d = ex_gcd(b, a % b, x, y);
    int t;
    t = x;
    x = y;
    y = t - a / b * y;
    return d;
}

各大OJ网站上的用到扩欧算法的试题:
P O J POJ POJ 2141, 2773
Z O J ZOJ ZOJ 3593

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Alan wade

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值