数论——斐波那契练习题一——斐波那契中的gcd

题面

题目描述

对于Fibonacci数列:1,1,2,3,5,8,13……大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少?
输入输出格式
输入格式:
两个正整数n和m。(n,m<=10^9)
注意:数据很大

输出格式:

Fn和Fm的最大公约数。
由于看了大数字就头晕,所以只要输出最后的8位数字就可以了。

输入输出样例

输入样例#1: 复制
4 7
输出样例#1: 复制
1

分析

其实只要明确一个问题就可以了:

gcd(F[n],F[m])=F(gcd(n,m))

好像有这么一个结论:欧几里得算法最差的情况下就是斐波那契数列相邻的两项。

code

#include<bits/stdc++.h>
using namespace std;
long long n,m,a[1005000];
int main()
{

    a[1]=1;
    a[2]=1;
    scanf("%d%d",&n,&m);
    for(int i=3;i<=__gcd(n,m);i++)
    a[i]=(a[i-1]+a[i-2])%100000000;
    printf("%d\n",a[__gcd(n,m)]);

    return 0;
}
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
由于题目没有具体说明是哪个作业的练习题,因此无法提供准确的答案。数论是关于整数性质与结构的研究,涉及到整数的基本性质,因此答案需要根据具体的题目来给出。以下是一些数论导引练习题的一般解答方法: 1. 证明素数无穷多个: 答案:假设素数只有有限个,标记为p1, p2, ..., pn。然后构造一个新的数q,q = p1p2...pn +1。由于1不是素数,所以q一定是一个素数。这样我们得到了比已知的所有素数都大的素数q,与假设矛盾,因此素数无穷多个。 2.证明方程x^2 + y^2 = z^2 在正整数解有无穷多个: 答案:首先,我们可以构造一个简单的解(x,y,z) = (3,4,5)。然后考虑将这个解乘以一个正整数k得到新的解(x',y',z')=(3k,4k,5k)。由于k是任意的正整数,所以可以构造出无穷多个解。因此,方程在正整数解有无穷多个。 3.证明质数的乘积加一不是素数: 答案:假设质数的乘积加一是一个素数,标记为p。然后考虑将p减去1,得到p-1。根据欧拉定理,如果p是一个质数,那么p-1一定能被p的某一个质因数整除。但由于p-1是p的倍数,所以p也能整除p-1,这与p是一个素数矛盾。因此,质数的乘积加一不是素数。 总之,数论是一个广泛而深入的领域,需要具体问题具体分析,根据题目给出的具体条件进行推导和证明。以上是一些常见的解答方法,但无法确定具体的题目,所以答案可能不是完整的或不适用于特定的练习题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值