斐波那契数列的常用性质

1、 gcd( F [ n + 1 ] , F [ n ] ) = 1

证明:

根据辗转相减法则

   gcd (F [ n + 1 ] , F [ n ] )
= gcd (F [ n + 1 ] - F [ n ] , F[ n ]) 
= gcd ( F [ n ] , F [ n - 1 ] )
= gcd ( F [ 2 ] , F [ 1 ] )
= 1

2、 F [ n + m ]  = F [ n ] * F [ m + 1 ]  + F [ n - 1 ] * F [ m ] 

证明:

   F [ n + m]  

= F [ n+ m - 1] +F [ n + m - 2 ]

= 2 * F [ n + m - 2 ] + F [ n + m - 3 ]

= 3 * F [ n + m - 3 ] + 2 * F[ n + m - 4 ]

= 5 * F [ n + m - 4 ] + 3 * F[ n + m - 5 ]

= 8 * F [ n + m - 5 ] + 5 * F[ n + m - 6 ]

= ······

= F [ x + 1 ] * F [ n + m  - x ] + F[ x ] * F [ n + m - (x + 1) ]

当 x == m 时 : F [ n + m ]  = F [ m + 1 ] * F [ n ] + F [ m ] * F [ n - 1 ]

3、gcd ( F [ n + m ] , F [ n ] ) = gcd(  F [ n ] , F [ m ] )

证明:

  gcd ( F [ n + m ] , F [ n ]  )
= gcd ( F [ n  + 1 ] F [ m ] +  F [ n ] F [ m - 1 ] , F [ n ] ) //根据2
= gcd ( F [ n +1  ] F [m ] , F [ n ] ) 
= gcd ( F [ n + 1 ] , F [  n ] ) *  Gcd ( F [ m ], F[ n ] )  //根据1
= gcd ( F [  m ] ,  F [ n ] )

4、gcd ( F[ n ] , F[ m ] ) = F[ gcd ( n , m ) ] 

设斐波那契数列第x项为F[x]
则有结论gcd ( F [ n ] , F [ m ] ) = F [ gcd ( n ,m  ) ]

证明:

由3得:

    gcd ( F [  m ] ,  F [ n ] )

=  gcd ( F [ m - n ] , F [ n ] )

=  gcd ( F [m - 2 * n ], F [ n ] )

= gcd ( F [ m % n ] , F [ n ] )

根据代换和递归的思想,其实上边的公式就是辗转相除法gcd(m, n)

所以:gcd ( F[ n ] , F[ m ] ) = F[ gcd ( n , m ) ] 

 

该性质的应用题目:https://www.luogu.org/problemnew/show/P1306

AC参考代码:

#include<bits/stdc++.h>
#define up(i, x, y) for(int i = x; i <= y; i++)
#define down(i, x, y) for(int i = x; i >= y; i--)
#define maxn ((int)1e5 + 10)
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef long long ll;
typedef vector<ll> vec;
typedef vector<vec> mat;
const int M = (int)1e8;

mat mul(mat &A, mat &B)
{
    mat C(A.size(), vec(B[0].size()));
    for(int i = 0; i < A.size(); i++)
    {
        for(int k = 0; k < B.size(); k++)
        {
            for(int j = 0; j < B[0].size(); j++)
            {
                C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % M;
            }
        }
    }
    return C;
}

mat power(mat A, ll n)
{
    mat B(A.size(), vec(A.size()));
    for(int i = 0; i < A.size(); i++)
    {
        B[i][i] = 1;
    }
    while(n > 0)
    {
        if(n & 1) B = mul(B, A);
        A = mul(A, A);
        n >>= 1;
    }
    return B;
}

ll n, m;

int main()
{
    scanf("%lld %lld", &n, &m);
    n = __gcd(n, m);  // 性质的应用
    mat A(2, vec(2));
    A[0][0] = 1 ;A[0][1] = 1 ;
    A[1][0] = 1 ;A[1][1] = 0 ;
    A = power(A, n);  //矩阵快速幂
    printf("%lld\n", A[1][0] % M);
}

 

 

 

 

 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值