1、 gcd( F [ n + 1 ] , F [ n ] ) = 1
证明:
根据辗转相减法则
gcd (F [ n + 1 ] , F [ n ] )
= gcd (F [ n + 1 ] - F [ n ] , F[ n ])
= gcd ( F [ n ] , F [ n - 1 ] )
= gcd ( F [ 2 ] , F [ 1 ] )
= 1
2、 F [ n + m ] = F [ n ] * F [ m + 1 ] + F [ n - 1 ] * F [ m ]
证明:
F [ n + m]
= F [ n+ m - 1] +F [ n + m - 2 ]
= 2 * F [ n + m - 2 ] + F [ n + m - 3 ]
= 3 * F [ n + m - 3 ] + 2 * F[ n + m - 4 ]
= 5 * F [ n + m - 4 ] + 3 * F[ n + m - 5 ]
= 8 * F [ n + m - 5 ] + 5 * F[ n + m - 6 ]
= ······
= F [ x + 1 ] * F [ n + m - x ] + F[ x ] * F [ n + m - (x + 1) ]
当 x == m 时 : F [ n + m ] = F [ m + 1 ] * F [ n ] + F [ m ] * F [ n - 1 ]
3、gcd ( F [ n + m ] , F [ n ] ) = gcd( F [ n ] , F [ m ] )
证明:
gcd ( F [ n + m ] , F [ n ] )
= gcd ( F [ n + 1 ] F [ m ] + F [ n ] F [ m - 1 ] , F [ n ] ) //根据2
= gcd ( F [ n +1 ] F [m ] , F [ n ] )
= gcd ( F [ n + 1 ] , F [ n ] ) * Gcd ( F [ m ], F[ n ] ) //根据1
= gcd ( F [ m ] , F [ n ] )
4、gcd ( F[ n ] , F[ m ] ) = F[ gcd ( n , m ) ]
设斐波那契数列第x项为F[x]
则有结论gcd ( F [ n ] , F [ m ] ) = F [ gcd ( n ,m ) ]
证明:
由3得:
gcd ( F [ m ] , F [ n ] )
= gcd ( F [ m - n ] , F [ n ] )
= gcd ( F [m - 2 * n ], F [ n ] )
= gcd ( F [ m % n ] , F [ n ] )
根据代换和递归的思想,其实上边的公式就是辗转相除法gcd(m, n)
所以:gcd ( F[ n ] , F[ m ] ) = F[ gcd ( n , m ) ]
该性质的应用题目:https://www.luogu.org/problemnew/show/P1306
AC参考代码:
#include<bits/stdc++.h>
#define up(i, x, y) for(int i = x; i <= y; i++)
#define down(i, x, y) for(int i = x; i >= y; i--)
#define maxn ((int)1e5 + 10)
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
typedef long long ll;
typedef vector<ll> vec;
typedef vector<vec> mat;
const int M = (int)1e8;
mat mul(mat &A, mat &B)
{
mat C(A.size(), vec(B[0].size()));
for(int i = 0; i < A.size(); i++)
{
for(int k = 0; k < B.size(); k++)
{
for(int j = 0; j < B[0].size(); j++)
{
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % M;
}
}
}
return C;
}
mat power(mat A, ll n)
{
mat B(A.size(), vec(A.size()));
for(int i = 0; i < A.size(); i++)
{
B[i][i] = 1;
}
while(n > 0)
{
if(n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
ll n, m;
int main()
{
scanf("%lld %lld", &n, &m);
n = __gcd(n, m); // 性质的应用
mat A(2, vec(2));
A[0][0] = 1 ;A[0][1] = 1 ;
A[1][0] = 1 ;A[1][1] = 0 ;
A = power(A, n); //矩阵快速幂
printf("%lld\n", A[1][0] % M);
}