目 录
一、案例背景
ChatGPT是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。
二、分析要点内容
(1)从不同的角度分析ChatGPT软件工程可能存在的伦理问题。
(2)作为一名软件工程专业的学生,您认为在使用ChatGPT的过程中,存在哪些隐藏的风险。
(3)基于对潜藏伦理问题的分析,你认为可以采取哪些措施进行防范。
(4)作为大数据创新科技人员,您认为应具备怎样的工程伦理责任。
三、分析要求
1、参考第一章工程伦理的四种不同立场、第二章工程中的风险和安全与责任、第五章工程共同体的伦理责任、第十章大数据创新科技人员的伦理责任.结合理论知识内容进行分析;
2、分析报告结构清晰,论点论据互相印证;
3、每人一份作业,格式规范,严禁抄袭,不少于2000字。
四、分析内容
随着时代的不断发展和进步,互联网技术在我们的身边无处不在,在人工智能技术[1]的驱动下诞生了自然语言处理工具ChatGPT。它可以通过在训练阶段所预测的模式和统计规律进行对应问题的回答,还可以通过依据聊天内容的上下文与对方进行互动,就像是和一个真正的人类平常聊天一样,它甚至还可以为用户进行邮件信息的撰写、视频脚本的制作、相关文案的翻译工作以及书写论文等一系列工作任务。
图1-1 ChatGPT技术应用
虽然ChatGPT为我们的生活带来了一定程度上的便利,但是ChatGPT软件工程也存在着与之对应的一些列伦理问题。由于该工程在进行训练和改进的过程中需要对用户的数据信息进行收集,在该过程中可能会引发数据的隐私以及安全问题,如果不能够对用户的数据信息进行妥善的保护处理,不但会造成用户信息的泄露而导致隐私权[2]被侵犯,还会因为个人的数据信息被恶意利用而遭受黑客的攻击进而造成用户财产的损失。同时ChatGPT作出的回答还会因为在训练数据的过程中由于存在一些偏见和歧视而受到对应的影响,从而导致ChatGPT作出的回答也会存在偏见和歧视,使某些用户受到不公平的对待,违背了技术伦理中的公平公正原则。因此在ChatGPT的开发和应用过程中必须高度重视对用户个人隐私和数据安全[3]的保护,同时还应该注意训练数据的公正性和无偏见性,进而避免产生技术偏见和相关的歧视问题。
图1-2 ChatGPT技术领域应用模态图
在整个的经济体环境下,ChatGPT需要兼顾商业利益和用户权益[4]两个方面。例如某些运营商可能会因为提高自己的收益而损害用户的相关体验,进行服务质量的调整和收费标准的提高,突出了商业利益与用户权益之间的不平衡问题。在知识产权领域由于ChatGPT会对他人的作品、产品代码以及相关数据进行模型训练和学习,从而导致了知识产权与利益分配之间的复杂关系。为了可以在实现商业价值的同时尊重和保护用户的相关知识产权[5],开发者必须对该问题作出明确的思考,并寻找可持续的、符合社会期望的相关解决方案,进而获得社会群体的广泛认可和信任。
图1-3 ChatGPT利益能效占比图
当ChatGPT为用户提供相关建议和指导时,如果这些建议或者指导导致用户作出错误的决策而产生经济损失,进而涉及到技术提供方是否为本次事件承担对应的责任。同时ChatGPT也需要受到监管机构的监管,这时就需要平衡监管[6]与创新之间的力度,进而确保监管的公正性以及有效性。由于监管机构的技术水平速度更新较慢以及法律法规的滞后,想要在不破坏创新的前提下确保相关技术水平的合规性和安全性就是一个比较困难的问题,这需要在技术设计、软件开发、产品应用以及平台监控等各个环节进行充分的考虑和处理,进而确保相关技术的健康发展并更大程度的发挥潜在价值。
图1-4 ChatGPT责任划分对比图
ChatGPT在其开发阶段和运营阶段需要消耗大量的能源和计算资源[7],随着技术的不断发展和软件产品的不断迭代更新,一些旧的设备和技术也逐渐被淘汰,从而导致相关的电子废弃物不断地增多。无论是从能源消耗还是从电子废弃物的角度考虑,ChatGPT在技术、利益、责任环境等多个伦理维度都存在着一些潜在的问题和挑战。为了确保其软件工程的合法合规性,相关的开发和运营团队必须在产品设计、软件开发、产品运营和软件监控[8]的全过程进行充分的考虑,并采取相关的预防以及应对措施来解决和缓解与之产生的相关问题。
图1-5 ChatGPT资源占用分析图
在使用ChatGPT的过程中会因为设备中的一些零部件老化而造成隐藏风险的产生,ChatGPT作为一个复杂的软件系统,其运行需要依赖于各个硬件设备的相关支持。而这些设备的零部件随着使用时长的不断加大而导致其内容零部件的老化,设备的相关性能也随之逐渐下降,进而会导致ChatGPT响应速度的下降,甚至可能会出现卡顿或者死机的情况,进而影响用户的实际体验和对系统的稳定性造成威胁。同时一些老化的零部件容易产生一些列的故障问题,例如硬盘损坏、数据泄露[9]等会导致ChatGPT无法正常的运行,甚至造成相关数据信息的丢失,增加产品的维护成本和维护时长。
图1-6 ChatGPT部件周期使用统计图
由于系统失灵可能会导致ChatGPT中相关数据信息的丢失、系统崩溃以及相关的安全隐患,给用户造成一定的成本损失。同时也会引发一系列的连锁反应[10],例如造成用户的信任度下降、黑客攻击以及恶意代码的注入等一些列问题,对用户的敏感信息进行窃取,甚至对系统的相关数据和逻辑信息进行篡改。
图1-7 ChatGPT数据信息处理流程图
在ChatGPT的使用过程中也会存在一些列的非线性问题,比如用户行为的不可预测性、系统反馈机制的滞后性等,导致相关的反馈信息与用户需要的回答不符,甚至引发其用户的不满和抱怨,对系统的口碑和声誉造成极大的损害。由于反馈机制[11]的滞后会导致用户在等待过程中产生焦虑和不满,进而影响用户的体验感和满意度。因此需要定期对相关的硬件设施进行检查和维护,加强对应控制系统的稳定性和安全性,并对用户行为的变化和趋势进行及时的关注和反馈,加强系统的监控和相关的预警机制,并对此建立完善的应急处理预案和相应的响应机制,确保ChatGPT系统的稳定性、安全性和可靠性,进而更好的应对可能出现的风险和问题。
图1-8 ChatGPT效能雷达图
在一些高温或者暴雨的极端天气下网络设备容易因为过热或者进水而产生故障,这些故障可能会造成ChatGPT服务的中断或者是数据信息[12]的丢失。例如网络设备出现损坏、电力系统供应中断以及在极端的气候条件下可能会导致网络信号信息受到干扰和衰减,使其ChatGPT的响应速度下降和数据传输过程中数据信息出现错误,同时设备受损后的恢复以及修复所需要的成本和时间给用户以及企业带来了一定的负担和损失。因此加强对网络设备的维护和保护[13],定期对设备的运行状态进行检查,确保设备在极端天气下的正常运行,同时对设备进行备份和冗余设计,进而减少故障发生的可能性。
图1-9 ChatGPT极端天气构建改进图
在ChatGPT的应用过程中,由于工程设计技术的发展和工程设计理念的相对滞后,可能会出现设计与实际需求之间脱节的情况。当工程团队在设计的时候对风险因素评估[14]的不够全面或者存在偏见都会导致系统在应对一些特定场景是表现不佳甚至出现故障。如果操作人员故意利用关键信息或者是敏感数据进行非法活动,会导致系统产生安全风险和与之相关的法律纠纷。因此加强对工程团队的技术培训和安全意识教育是必不可少的,同时需要建立完善的质量控制体系以及信息安全管理的体系,确保可以及时的应对各种复杂的场景和系统运行的规范性以及安全性,不断地提高其责任心和职业操守[15],按照规定的流程进行相关的操作并保护其系统的安全性。
图1-10 ChatGPT信息数据内置处理步骤分析图
工程的质量监管与安全在先进的ChatGPT项目中尤为重要,建立严格的质量控制体系是项目的基础,他需要覆盖整个工程项目的全部过程,确保每一个环节都满足其质量标准。在开发环节应该邀请第三方机构独立对产品进行质量抽查[16]和评估,进而确保产品质量的真实性和可靠性。一旦发现相关的质量问题需要及时的作出处理和整改,防止问题的扩大。同时定期对工程团队开展关于质量和安全的培训和教育,不断地提高团队对质量和安全的认知。
图1-11 ChatGPT信息控制管理监控图
在项目启动之前我们必须仔细识别和评估可能会出现的一些列意外风险,并针对可能出现的风险制定具体的预防和应对措施,确保在应对问题时作出及时的响应和反馈[17]。实时的对系统的运行状态和关键指标进行把控,建立完善的监控预警系统,及时的捕获过程中出现的问题,进而确保工作人员可以及时的采取措施进行修复和解决。
图1-12 ChatGPT用户反馈应答处理流程图
在项目开展的过程中制定一份详细的事故预案,对过程中可能出现的紧急情况作出全面的思考和预演。其中应详细记录项目中每个人的具体职责、如果及时的通信和联络对应的负责人、在紧急情况下如何高效的调度所需资源等,只有这样在发生事故时才可以有秩序的作出迅速响应。
图1-13 ChatGPT信息交互图
作为大数据的创新科技人员,需要确保其数据信息的准确性以及完整性,避免因为数据信息的错误或者是数据内容的偏见而导致决策的失误。同时需要对用户的数据信息进行保密,尊重用户的隐私权并避免用户隐私信息的泄露。保持对相关的技术信息的持续学习和更新[18],不断地提高其自身的专业素养和技能水平,避免因为个人偏见而导致最终决策的错误。尊重他人的贡献以及劳动成果,积极参与和分享自己的相关知识,推动整个团队的高效创新和发展。
图1-14 ChatGPT用户使用反响调查统计图
对技术的社会影响和价值作用作出及时的评估,确保自己的所有技术应用符合社会的公共利益以及道德标准[19]。在开发和应用技术的时候我们应该考虑对人员就业、用户隐私、数据安全等方面的影响,避免对社会造成负面的影响。与此同时积极参与到社会的公益事业和公共服务之中,利用超前的技术和数据优势为社会的整体发展作出贡献,例如通过大数据和人工智能技术解决出现的社会问题、提高公共设施以及公共服务的使用效率、推动社会经济的高水平发展。对一些弱势群体的日常需求和个人权益及时的进行关注,避免因为技术应用而加剧其社会的不平等情况和社会分化。
图1-15 ChatGPT逻辑呈现框架图
在当下大数据创新的时代背景下,相关的科技人员需要承担对安全的义务、可持续发展的责任以及展现其自身的忠诚与举报行为。确保大数据系统的安全性以及稳定性,保护所有用户的数据隐私并避免技术的滥用和道德风险[19],关注对能源效率和资源的高效利用,减低相关的能耗以及浪费。面对违法、违规以及不道德的行为时工程师应坚守职业道德和法律的底线,勇于举报这些行为并积极配合相关机构进行调查处理。
图1-16 ChatGPT义务分享步骤流程图
对于ChatGPT等先进的智能技术,我们需要在创新的同时关注其对应的一些列伦理问题,包括数据隐私的处理、数据信息的公平性以及技术使用的合理性等。对于过程中可能出现的问题和风险制定并遵循相关的法律法规和政策措施,增强技术的透明度和可解释性,并不断地提高公众的技术素养和伦理意识。尊重用户数据信息的隐私性、积极执行行业规范制定的规章制度、不断地推动社会的高质量发展以及其行业的健康高效的运作。
参考文献
- 王春晖.应当高度关注ChatGPT的伦理问题[J].中国电信业,2023(6):56-58
- 王佑镁,王旦,梁炜怡,柳晨晨.ChatGPT教育应用的伦理风险与规避进路[J].开放教育研究,2023,29(2):26-35
- 邹开亮,刘祖兵.ChatGPT的伦理风险与中国因应制度安排[J].海南大学学报:人文社会科学版,2023,41(4):74-84
- 郝国强,李星莹,杨琴.通用人工智能(AGI)的技术、应用及安全问题:以ChatGPT为例[J].传承,2023(1):100-110
- 赵精武.ChatGPT风险治理中的科技伦理规则审视与反思[J].可持续发展经济导刊,2023(4):28-30.
- 王佑镁,王旦,梁炜怡,柳晨晨.ChatGPT教育应用的伦理风险与规避进路[J].开放教育研究,2023,29(2):26-35.
- 夏润泽,李丕绩.ChatGPT大模型技术发展与应用[J].数据采集与处理,2023,38(5):1017-1034.
- 曾金.生成式人工智能ChatGPT推动职业教育数字化发展的应用场景[J].当代职业教育,2023(4):37-44.
- 李祉岐,罗大勇,孙磊,霍钰,尹琴,宋洁.ChatGPT在网络攻防领域的应用及发展趋势[J].中国信息化,2023(9):34-35.
- 吴军其,吴飞燕,文思娇,张萌萌,王嘉桐.ChatGPT赋能教师专业发展:机遇、挑战和路径[J].中国电化教育,2023(5):15-23+33.
- 于文轩,马亮,王佃利,韩志明,谢新水,叶林,文宏.“新一代人工智能技术ChatGPT的应用与规制”笔谈[J].广西师范大学学报:哲学社会科学版,2023,59(2):28-53.
- 郑世林,姚守宇,王春峰.ChatGPT新一代人工智能技术发展的经济和社会影响[J].产业经济评论,2023(3):5-21.
- 郑燕林,任维武.实践观视域下ChatGPT教学应用的路径选择[J].现代远距离教育,2023(2):3-10.
- 吕君杰,郑石桥.ChatGPT在审计中的可能应用路径[J].商业会计,2023(9):47-49.
- 程平,廖音洁,李怡,王忠淅.基于ChatGPT的成本管理应用研究[J].商业会计,2023(8):29-33.
- 程平,冯璟逸,唐诗奇.ChatGPT在医院财务管理中的应用探析[J].商业会计,2023(9):37-40.
- 蒲清平,向往.生成式人工智能——ChatGPT的变革影响、风险挑战及应对策略[J].重庆大学学报:社会科学版,2023,29(3):102-114.
- 罗生全,谭爱丽.ChatGPT应用背景下教育发展的逻辑转换及实践路径[J].重庆理工大学学报:社会科学,2023,37(5):7-15.
- 樊博.ChatGPT的风险初识及治理对策[J].学海,2023(2):58-63.