分类器设计之线性分类器和线性SVM(含Matlab代码)

本文探讨了线性分类器和线性SVM在高维空间中的应用,通过Matlab代码展示了如何求解线性规化问题以找到分类超平面。在二维数据实例中,对比了线性分类器和线性SVM的分类效果,结果显示线性SVM具有更好的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于高维空间的两类问题,最直接的方法是找到一个最佳的分类超平面,使得并且,对于所有的正负训练样本. 因此,以上问题可以表达为:

问题P0可以转化为


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值