Description
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。
Input
n(1≤n≤50000)
Output
m
Sample Input
4
Sample Output
6
一道神题,昨天模拟赛的t2,然而昨天太浪了,就没有做(谴责)。
我相信许多人和我一样刚看了这道题一定会不知所措,接下来就分析一下。
题目中给了这个正整数的因数个数,并不好处理,如果是质因数就好处理多了。
介绍一下约数公式:n=Πpri[i]*a[i](n是这个数的因数个数,pri是质数,a是指数)。
我就不证明了,我也不会。
数据范围只有50000,计算可得约数个数最多16个,先打出一张素数表,以后的质数对答案没有贡献。
dfs(x,y,z)——x表示搜索到的正整数,y表示x的因数个数,z表示已经搜索到了第z个质数。
这样是会超时的,考虑剪枝。
-
枚举当前质数的指数i时,y%(i+1)==0,那么就是求y的因数,时间复杂度sqrt(y)。
-
当前质数的质数不可以为0,因为是从小到大搜索,还是比较有用的。
又发现x是会爆long long的(比赛时用double卡的精度)如果搜索时加高精度就太麻烦了,考虑用对数。
log(n)=Σa[i]*log(pri[i])(自己推吧,字母代表的意义和上面一样)。
搜索时保存指数,最后加一个高精度就好了。
听说还可以用dp,可我不会。
#include<iostream>
#include<cstring>
#include<cfloat>
#include<cstdio>
#include<cmath>
using namespace std;
int n,ans[100005],res[21],tmp[21],pri[]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
double mn=DBL_MAX,lg[21];
void print()
{
ans[0]=ans[1]=1;
for(int i=1;i<=16;i++)
{
for(;res[i]>0;res[i]--)
{
for(int j=1;j<=ans[0];j++)
ans[j]*=pri[i];
for(int j=1;j<=ans[0];j++)
ans[j+1]+=ans[j]/10,ans[j]%=10;
if(ans[ans[0]+1]!=0)
ans[0]++;
while(ans[ans[0]]/10!=0)
ans[ans[0]+1]+=ans[ans[0]]/10,ans[ans[0]]%=10,++ans[0];
}
}
for(int i=ans[0];i>=1;i--)
printf("%d",ans[i]);
printf("\n");
}
void dfs(double x,int y,int z)//现在的数是e^x,还剩y个因子,选到第z个质数
{
if(x>=mn)
return ;
if(y==1)
{
mn=x;
memset(res,0,sizeof(res));
for(int i=1;i<=z-1;i++)
res[i]=tmp[i];
return ;
}
if(z>16)
return ;
for(int i=0;(i+1)*(i+1)<=y;i++)//找y的因子
if(y%(i+1)==0)
{
if(i!=0)
{
tmp[z]=i;
dfs(x+lg[z]*i,y/(i+1),z+1);
}
if((i+1)*(i+1)!=y)
{
tmp[z]=y/(i+1)-1;
dfs(x+lg[z]*(y/(i+1)-1),i+1,z+1);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=16;i++)
lg[i]=log(pri[i]);
dfs(0,n,1);
print();
return 0;
}