BZOJ 1225: [HNOI2001] 求正整数

该博客讨论了一道程序设计竞赛题目,要求找出具有给定因子数n的最小正整数m。作者指出,直接处理因数个数不易,但可以通过质因数分解来解决。通过建立约数公式并利用素数表进行搜索,可以找到答案。为了优化搜索过程,需要进行剪枝操作,确保在枚举质数指数时,因数个数能被(i+1)整除,从而降低时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6;而且是最小的有4个因子的整数。

Input

n(1≤n≤50000)

Output

m

Sample Input

4

Sample Output

6


一道神题,昨天模拟赛的t2,然而昨天太浪了,就没有做(谴责)。

我相信许多人和我一样刚看了这道题一定会不知所措,接下来就分析一下。

题目中给了这个正整数的因数个数,并不好处理,如果是质因数就好处理多了。

介绍一下约数公式:n=Πpri[i]*a[i](n是这个数的因数个数,pri是质数,a是指数)。

我就不证明了,我也不会。

数据范围只有50000,计算可得约数个数最多16个,先打出一张素数表,以后的质数对答案没有贡献。

dfs(x,y,z)——x表示搜索到的正整数,y表示x的因数个数,z表示已经搜索到了第z个质数。

这样是会超时的,考虑剪枝。

  1. 枚举当前质数的指数i时,y%(i+1)==0,那么就是求y的因数,时间复杂度sqrt(y)。
  2. 当前质数的质数不可以为0,因为是从小到大搜索,还是比较有用的。
又发现x是会爆long long的(比赛时用double卡的精度)如果搜索时加高精度就太麻烦了,考虑用对数。
log(n)=Σa[i]*log(pri[i])(自己推吧,字母代表的意义和上面一样)。
搜索时保存指数,最后加一个高精度就好了。
听说还可以用dp,可我不会。

#include<iostream>
#include<cstring>
#include<cfloat>
#include<cstdio>
#include<cmath>
using namespace std;
int n,ans[100005],res[21],tmp[21],pri[]={0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
double mn=DBL_MAX,lg[21];
void print()
{
	ans[0]=ans[1]=1;
	for(int i=1;i<=16;i++)
	{
		for(;res[i]>0;res[i]--)
		{
			for(int j=1;j<=ans[0];j++)
				ans[j]*=pri[i];
			for(int j=1;j<=ans[0];j++)
				ans[j+1]+=ans[j]/10,ans[j]%=10;
			if(ans[ans[0]+1]!=0)
				ans[0]++;
			while(ans[ans[0]]/10!=0)
				ans[ans[0]+1]+=ans[ans[0]]/10,ans[ans[0]]%=10,++ans[0];
		}
	}
	for(int i=ans[0];i>=1;i--)
		printf("%d",ans[i]);
	printf("\n");
}
void dfs(double x,int y,int z)//现在的数是e^x,还剩y个因子,选到第z个质数 
{
	if(x>=mn)
		return ;
	if(y==1)
	{
		mn=x;
		memset(res,0,sizeof(res));
		for(int i=1;i<=z-1;i++)
			res[i]=tmp[i];
		return ;
	}
	if(z>16)
		return ;
	for(int i=0;(i+1)*(i+1)<=y;i++)//找y的因子 
		if(y%(i+1)==0)
		{
			if(i!=0)
			{
				tmp[z]=i;
				dfs(x+lg[z]*i,y/(i+1),z+1);
			}
			if((i+1)*(i+1)!=y)
			{
				tmp[z]=y/(i+1)-1;
				dfs(x+lg[z]*(y/(i+1)-1),i+1,z+1);
			}
		}
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=16;i++)
		lg[i]=log(pri[i]);
	dfs(0,n,1);
	print();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值