关闭

SIFT学习--近似LoG

2197人阅读 评论(0) 收藏 举报

上一节创建了尺度空间,现在我们用模糊处理过的图像来创建另一个图像集合(高斯差分 Difference of Gaussians,DoG)。高斯差分图片可以很好地查找出关键点。

1.  高斯拉普拉斯算子

高斯拉普拉斯算子是这样的,你拿到一个图像,对它进行模糊处理(高斯),然后你计算它每个像素的二阶导数(拉普拉斯),它能很好的表示出边界和角点,因为二阶导数对噪声非常敏感,所以模糊处理可以抚平噪声。但问题是,计算所有二阶导数是对计算是一个沉重的负担,所以我们决定近似的拟合它。

2. DoG

为了更快的产生拉普拉斯图像,我们使用了尺度空间。我们计算两个相邻尺度间的差分,也就是高斯差分(DoG),下图可以很好地说明这一点:


转换成数学公式如下:


DoG实际上是一个尺度归一化的LoG算子的近似

下面是一个运用DoG算子的例子:




1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:25717次
    • 积分:392
    • 等级:
    • 排名:千里之外
    • 原创:15篇
    • 转载:0篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论