平方根倒数的一个快速近似计算算法

该博客介绍了《Quake III》游戏中使用的快速求解平方根倒数的算法,该算法利用IEEE浮点数表示规则,通过一次减法运算和位移运算快速估算结果,然后使用牛顿迭代法进行优化提高精度。核心公式涉及到常数0x5F3759DF,用于减少初始误差,后续迭代进一步提升准确度。
摘要由CSDN通过智能技术生成

已知一个浮点数 x x x,现在需要求 1 x \frac{1}{\sqrt{x}} x 1,这是一个非线性方程组的求解问题,可以采用不动点迭代法、牛顿迭代法之类的方法来解决。但是早在上个世纪,在游戏《Quake III》中,开发者就采用了一种非常快速求解这个问题的算法,这个算法非常有意思,而且现在也被一些GPU在硬件上实现,下面来看一下它的思路。

首先,设 x x x按照IEEE浮点数表示规则对应的无符号整数为 I x I_x Ix y = 1 x y=\frac{1}{\sqrt{x}} y=x 1,y对应的无符号整数为 I y I_y Iy,在IEEE的浮点数表示规则中,一个单精度浮点数由32位二进制位表示,最高位代表符号位 S S S,23-31这8位表示指数 E E E,0-22这23位表示尾数 F F F,如果 x = s i g n ∗ 2 e x ∗ ( 1 + f ) x=sign *2^{e_x}*(1+f) x=sign2ex(1+f),那么对应的二进制表示中: S = 0 ( s i g n = 1 ) , 1 ( s i g n = − 1 ) S=0(sign=1),1(sign=-1) S=0(sign=1),1(sign=1) E = e x + 127 E=e_x+127 E=ex+127 F = 2 23 ∗ f F=2^{23} *f F=223f

因此如果对x取对数,就有 l o g 2 ( x ) = l o g 2 ( s i g n ∗ 2 e x ∗ ( 1 + f ) ) log_2(x) =log_2(sign*2^{e_x}*(1+f)) log2(x)=log2(sign2ex

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值