cocos2d-x节点(CCDouble.h)API

本文详细介绍了Cocos2d-x框架中的CCDouble类,包括其构造函数、成员变量和方法实现,帮助开发者更好地理解和使用该类进行游戏开发。

本文来自http://blog.csdn.net/runaying ,引用必须注明出处!

cocos2d-x节点(CCDouble.h)API

温馨提醒:为了大家能更好学习,强烈推荐大家看看本人的这篇博客 Cocos2d-X权威指南笔记

double 简单的覆盖了一些方法没有太多内容

///\cocos2d-x-3.0alpha0\cocos2dx\cocoa
//double 简单的覆盖了一些方法没有太多内容


#ifndef __CCDOUBLE_H__
#define __CCDOUBLE_H__

#include "CCObject.h"

NS_CC_BEGIN

/**
 * @addtogroup data_structures
 * @{
 */

class CC_DLL Double : public Object, public Clonable
{
public:
    Double(double v)
        : _value(v) {}
    double getValue() const {return _value;}

    static Double* create(double v)
    {
        Double* pRet = new Double(v);
        if (pRet)
        {
            pRet->autorelease();
        }
        return pRet;
    }

    /* override functions */
    virtual void acceptVisitor(DataVisitor &visitor) { visitor.visit(this); }
    
    Double* clone() const
    {
        return Double::create(_value);
    }
private:
    double _value;
};

// end of data_structure group
/// @}

NS_CC_END

#endif /* __CCDOUBLE_H__ */


内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值