一根木根随机折成三截能拼成三角形的概率

随机折木棍拼三角形的概率分析
博客探讨了将一根木棍随机折成三截形成三角形的概率问题。通过数学分析,区分了两次折断的方式,发现不同折法概率不同,一次折断的概率为1/4,两次随机折断的概率为ln(2)-1/2,约为0.1931。此问题源自数学课堂,旨在引发兴趣和讨论。

一根木根随机折成三截能拼成三角形的概率是多少?


不妨令棍长为1,随机截成的三段中有两段长度分别为 xy ,则第三段z=1xy。这时xy都是自由的随机变量,为了符合实际情况,要求满足:

x>0y>0x+y<1

这也是基本事件空间。
为了能够拼成三角形,三边长度要求满足:
x+y>zx+z>yy+z>x

解得:
x<12y<12x+y>12

通过计算符合要求的区域面积与基本事件空间的面积,可以得到所求的概率是 1
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值