很经典的一道题目:一根木棍随机折成三段,这三段能组成三角形的概率是多少?
有同学被问到的题目是:一根木棍,随机折成四段,然后再随机取三段,能够组成三角形的概率是多少?
想了想应该是上边经典的题目是一样的(如果有大神能数学证明一下真的一样,或者数学证明一下不一样,将万分感谢!!)。
对于上边的经典题目,我们假设随机折成三段长度分别为 x,y,z 那么能够组成三角形就是要满足:
- x + y > z
- x + z > y
- y + z > x
三个变量不好看,我们用 L - x - y 代替 z,得到:
- x + y > L - x - y, 即 y > -x + L / 2
- x + L - x - y > y, 即 y < L / 2
- y + L - x - y > x, 即 x < L / 2
在二维坐标系下表示,画出来三条直线如下(假设 L = 10):

可以看到上边三个半平面包围的区域是区域1。同时x、y能取到的值都是 (0, L) 的开区间,加上 x + y < L 这个半平面的范围,所包含的区域就是 1、2、3、4 四个三角形,所以 x、y、z 能够组成三角形的概率,就是 1 / 4。