局部多项式插值法【LPI】的工作原理

原创 2016年08月29日 17:38:15

全局多项式插值法可以根据整个表面拟合多项式,而局部多项式插值法可以对位于指定重叠邻域内的多个多项式进行拟合。通过使用大小和形状、邻域数量和部分配置,可以对搜索邻域进行定义。.或者,可以使用探索性趋势面分析参数同步更改带宽、空间条件数(如果已启用)和搜索邻域值。还可以通过优化按钮 优化 基于交叉验证统计信息为 LPI 进行参数优化。

一阶全局多项式可以根据数据对单平面进行拟合;二阶全局多项式可以对包含一个弯曲的表面进行拟合(表面可以表示山谷);三阶全局多项可以对包含两个弯曲的表面进行拟合;依此类推。但是,当表面具有多种形状(如延绵起伏的地表)时,单个全局多项式将无法很好地拟合。多个多项式平面能够更加准确地体现表面,如下图所示:


另一方面,局部多项式插值法仅使用既定邻域内的点对指定阶数(0 阶、1 阶、2 阶、3 阶,等等)的多项式进行拟合。邻域相互重叠,每次预测所使用值是位于邻域中心的拟合的多项式的值。

在下图中,截取了样本高程数据的横截面(样带)。在第一幅图中,使用三个相邻点(红色点)对一阶多项式进行拟合,使用一条线(红色线)预测由蓝色点标识的位置所对应的未知值。在第二幅图中,通过另一个一阶段多项式对另一个位置(黄色点)进行预测。由于此位置与第一个位置之间的距离很小,因此在预测过程中使用了相同的测量点,但权重稍有不同,从而使得多项式的拟合效果存在些许差异(蓝线)。

随着这一过程的继续,将侧重于后续的预测位置,拟合局部多项式以对值进行预测。以下两幅图显示了为创建最终表面而被预测的另外两个任意点。橙色点是使用经测量的绿色采样点根据拟合的多项式(绿色线)预测而来的,而褐色点是根据浅紫色多项式预测而来的。


在以下两幅图中,为预测另外两个位置(蓝绿色点和绿色点)对另外两个多项式(黄色线和灰色线)进行了拟合。


与在 IDW 中选择幂 (p) 值相似,也需要在局部多项式中选择最佳参数,以将均方根预测误差 (RMSPE) 降至最小。

准确性的度量

局部多项式插值法提供了以下两种用于度量准确性的方法,但这两种方法对于 ArcGIS Geostatistical Analyst 中提供的其他确定性插值方法并不适用。

  • 预测标准误差用于表示与各位置的预测值相关的不确定性。
  • 空间条件数是一种表示预测方程的稳定或不稳定解对特定位置的适应程度的度量方式。如果条件数较大,则很小的矩阵系数变化便会导致解向量(回归系数)的较大变化。由于预测标准误差表面是在假定模型是正确的情况下创建的,因此空间条件数表面可显示数字模型稳定性的变化并提供与预测不确定性相关的其他信息。

局部多项式插值法依赖以下假设:

  • 在格网上采样(即,样本的间距相等)。
  • 搜索邻域内的数据值呈正态分布。

事实上,大多数数据集都不符合上述假设;在此类情况下,预测值将受到影响,但误差不会像预测标准误差那样大。为帮助确定特定区域内的结果是否可靠,LPI 提供了一个空间条件数表面。下表中显示了一些经验值,这些关键值在“条件数”表面中被渲染成黄色。

何时使用局部多项式插值法

全局多项式插值法适用于在数据集中创建平滑表面及标识长期趋势。然而,在地球科学中,除了长期趋势之外,感兴趣的变量通常还具有短程变化。当数据集显示出短程变化时,局部多项式插值法地图可捕获这种变化。

局部多项式插值法对邻域距离很敏感,较小的搜索邻域可能会在预测表面内创建空区域。因此,可以在生成输出图层之前预览表面。


版权声明:本文为生命奇迹泉原创文章,转载请注明出处生命奇迹泉http://blog.csdn.net/shengmingqijiquan

插值算法总结

1、最邻近元法   这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数...
  • jia_zhengshen
  • jia_zhengshen
  • 2013年09月18日 11:43
  • 7616

全局多项式插值法的工作原理

全局多项式插值法可根据输入采样点拟合出一个由数学函数(多项式)定义的平滑表面。全局多项式表面会逐渐变化并捕捉数据中的粗尺度模式。 从概念上讲,全局多项式插值法类似于取出一张纸,然后将其插入凸起点(凸...
  • shengmingqijiquan
  • shengmingqijiquan
  • 2016年08月29日 15:27
  • 1082

ArcGIS使用全局多项式插值法创建地图

步骤: 在 ArcMap 内容列表中单击包含感兴趣属性的点图层。 也可直接转到步骤 2,然后在地统计向导 的首页浏览到感兴趣的数据集。 启动地统计向导。在“方法”部分的确定性方法...
  • shengmingqijiquan
  • shengmingqijiquan
  • 2016年08月29日 15:33
  • 832

MATLAB 牛顿插值法程序

function p = newton(x,xi,yi,n) %ton(n,n)是一个二位数组,用来保存Newton插值多项式的表。 %ton第一列保存的是yi,函数值。 %x=11.5; %...
  • lz_1992
  • lz_1992
  • 2015年11月15日 16:48
  • 4618

【计算方法笔记】插值法:拉格郎日插值与牛顿插值

插值法
  • zhulinzhulinlin
  • zhulinzhulinlin
  • 2017年10月23日 17:54
  • 431

利用均差的牛顿插值法(Newton)

牛顿插值法——均差插值
  • zb1165048017
  • zb1165048017
  • 2015年09月10日 15:16
  • 4122

拉格朗日插值法复习小计

拉格朗日插值法概述因为n次方的函数图像可以有n+1个点确定(比如说y=kx+b就只用两个点确定,y=ax2+bx+cax^2+bx+c,只用三个点就可以确定),所以个n次方的方程给你n+1个x或者y就...
  • doyouseeman
  • doyouseeman
  • 2016年02月26日 20:40
  • 1279

插值法之Language和基本插值多项式的C++代码实现

初学数值计算,深感博大精深,代码实现仅仅是用最终的公式写程序,真正值得推崇的是公式背后的思想。这个程序是在前篇博客高斯消去法的基础上,两种基本插值方法的代码实现。 #include #...
  • yiyangbo
  • yiyangbo
  • 2013年04月05日 18:30
  • 1995

多项式插值法

问题描述 有一函数y=f(x)y=f(x)(被插值函数),已知一系列的点x0,x1,⋯,xnx_0,x_1,\cdots,x_n(插值节点),则 xx x0x_0 x1x_1 ...
  • daocaoren_
  • daocaoren_
  • 2017年09月23日 15:56
  • 96

Matlab中数据处理和多项式插值与曲线拟合

一、  基本统计处理 1、查取最大值MAX函数的命令格式有:[Y,I]= max (X):将max(X)返回矩阵X的各列中的最大元素值及其该元素的位置赋予行向量Y与I;当X为向量时,则Y与I为单变量...
  • HuoXingShiYiLang
  • HuoXingShiYiLang
  • 2015年07月23日 16:16
  • 1241
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:局部多项式插值法【LPI】的工作原理
举报原因:
原因补充:

(最多只允许输入30个字)