DeepFace: Closing the Gap to Human-Level Performance in Face Verification(精读)

本文深入解读了DeepFace论文,探讨其在人脸识别领域的贡献,旨在缩小与人类识别能力的差距。文章详述了研究目的、关键贡献、解决的问题以及所用数据库,并分享了实验成果。
摘要由CSDN通过智能技术生成

一.文献名字和作者

   Deepface: Closing the gap to human-level performance in face verification, Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato,Lior Wolf, CVPR2014
   

二.阅读时间

    2014年9月4日


三.文献的目的

     解决在人脸识别领域,目前的算法与人眼的识别效果之间的差距,作者提出了使用3D建模技术的人脸校准和使用改进型的CNN作为特征提取的方法,使得该方法在LFW数据集上面得到与人眼不相上下的效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值