数学基础01

笛卡尔积的符号化为:A×B={(x,y)|x∈A∧y∈B}


1.对任意集合A,根据定义有
AxΦ =Φ , Φ xA=Φ
2.一般地说,笛卡尔积运算不满足交换律,即
AxB≠BxA(当A≠Φ ∧B≠Φ∧A≠B时)
3.笛卡尔积运算不满足结合律,即
(AxB)xC≠Ax(BxC)(当A≠Φ ∧B≠Φ∧C≠Φ时)
4.笛卡尔积运算对并和交运算满足分配律,即
Ax(B∪C)=(AxB)∪(AxC)
(B∪C)xA=(BxA)∪(CxA)
Ax(B∩C)=(AxB)∩(AxC)
(B∩C)xA=(BxA)∩(CxA)

2,全域关系,就是全部元素之间都满足关系(含自身与自身的关系)
对应关系矩阵是全为1的矩阵

恒等关系,是满足且只满足自身与自身的关系,对应关系矩阵是单位矩阵

空关系,是元素之间都不满足关系。
如果是空集合,则是空矩阵
如果是非空集合,则是零矩阵


3.集合 X 与集合 Y 上的二元关系是 R=(X, Y, G(R)),其中 G(R),称为R,是笛卡儿积X × Y的子集

4.
 
 
关系的性质主要有以下五种:自反性,反自反性,对称性,反对称性和传递性。
自反性:
在集合 X上的关系 R,如对任意
,有
,则称 R是自反的。
反自反性(自反性的否定的强形式):
在集合 X上的关系 R,如对任意
,有
,则称 R是反自反的。
对称性:
在集合 X上的关系 R,如果有
则必有
,则称R是对称的。
反对称性(不是对称性的否定):
非对称性(对称性的否定的强形式):
非对称关系是满足反自反性的反对称关系。
传递性:
5.
设R是非空集合A上的关系, R的自反(对称或传递) 闭包是A上的关系R' ,满足
(1) R'是自反的(对称的或传递的)
(2)
(3) 对A上任何包含R的自反(对称或传递)关系R''有
 
一般将R的自反闭包记作r(R),对称闭包记作s(R) ,传递闭包记作t(R)。
下列给出了构造闭包的方法:
对于有限集合 A 上的关系 R ,存在一个正整数 s,使得
,且s不超过A的元素数。
求传递闭包是图论中一个非常重要的问题,例如给定了一个城市的交通地图,可利用求传递闭包的方法获知任意两个地点之间是否有路相连通。可以直接利用关系矩阵相乘来求传递闭包,但那样做复杂度比较高;好一点的办法是在计算矩阵相乘的时候用 分治法降低时间复杂度;但最好的方法是利用基于 动态规划Floyd-Warshall算法来求传递闭包。
6.

基本逻辑符号

符号名字解说例子读作范畴
实质蕴涵A ⇒ B 意味着如果 A 为真,则 B 也为真;如果 A 为假,则对 B 没有任何影响。x = 2 ⇒ x² = 4 为真,但 x² = 4 ⇒ x = 2 一般为假(因为 x 可以是 −2)。
蕴涵;如果.. 那么
命题逻辑
可能意味着同 ⇒ 一样的意思(这个符号也可以指示函数的域和陪域;参见数学符号表)。
可能意味着同 ⇒ 一样的意思(这个符号也可以指示超集)。
实质等价A ⇔ B 意味着 A 为真如果 B 为真,和 A 为假如果 B 为假。x + 5 = y +2 ⇔ x + 3 = y当且仅当;iff
¬逻辑否定陈述 ¬A 为真,当且仅当 A 为假。¬(¬A) ⇔ A
~命题逻辑
穿过其他算符的斜线同于在它前面
放置的"¬"。
x ≠ y ⇔ ¬(x =~y)
逻辑合取如果 A 与 B 二者都为真,则陈述 A ∧ B 为真;否则为假。n < 4 ∧ n >2 ⇔ n = 3(当 n 是自 然数的时候)。
逻辑析取如果 A 或 B 或二者均为真陈述,则 A ∨ B 为真;如果二者都为假,则 陈述为假。n ≣ 4 ∨ n ≢ 2 ⇔ n ≠ 3(当 n 是 自然数的时候)。
xor陈述 A ⊕ B 为真,在要么 A 要么 B 但不是二者为真的时候为真。A ⊻ B 意思相同。(¬A) ⊕ A 总是真,A ⊕ A 总是假。异或命题逻辑, 布尔代数
全称量词∀ x: P(x) 意味着所有的 x 都使 P(x) 都为真。∀ n ∈ N(n² ≣ n).对于所有; 对于任何;对于每个;任意的谓词逻辑
存在量词∃ x: P(x) 意味着有至少一个 x 使 P(x) 为真。∃ n ∈ N(n 是偶数)。存在着
∃!
唯一量词
∃! x: P(x) 意味着精确的有一个 x 使 P(x) 为真。∃! n ∈ N(n + 5 = 2n).精确的存在一个
:=定义x := y 或 x ≡ y 意味着 x 被定义为 y 的另一个名字(但要注意 ≡ 也可以意味着其他东西,比如全等)。cosh x := (1/2)(exp x + exp (−x))被定义为所有地方
:⇔P :⇔ Q 意味着 P 被定义为逻辑等价于 Q。A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
()优先组合优先进行括号内的运算。(8/4)/2 = 2/2 = 1, 而 8/(4/2) = 8/2 = 4。
推论x ├ y 意味着 y 推导自 x。A → B ├ ¬B → ¬A推论或推导命题逻辑, 谓词逻辑
7.数学分支

1:数学史
2:数理逻辑与数学基础  a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科    3:数论   a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科    4:代数学   a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科    5:代数几何学   6:几何学   a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
7:拓扑学   a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科    8:数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科    9:非标准分析   10:函数论   a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科    11:常微分方程   a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科    12:偏微分方程   a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科    13:动力系统   a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科    14:积分方程   15:泛函分析   a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科    16:计算数学   a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科    17:概率论   a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科    18:数理统计学   a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科    19:应用统计数学   a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟    20:应用统计数学其他学科   21:运筹学   a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科    22:组合数学   23:模糊数学
24:量子数学
25:应用数学 (具体应用入有关学科)
26:数学其他学科

8.



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值