保姆级Open WebUI 搭建

保姆级Open WebUI 搭建

服务器

这里推荐使用 雨云 服务器。点击以下链接注册可获得首月五折优惠卷 雨云注册链接

同时这里建议购买 香港 美国 地区服务器,域名无需备案。

请添加图片描述

配置请选择配置大于等于 2C2G 的机器,不推荐使用低于 2G 内存机器

请添加图片描述

选择系统时请务必选择 Debian 12 系统并预装 1Panel 面板

请添加图片描述

SSH 客户端(本项目为可选)

这里我个人使用 Termius 作为 SSH 客户端,你可以点击 Free SSH Client for Windows 官网下载。
请添加图片描述

如果你认为 Termius 没有中文,且太过复杂。你可以使用 Xshell 作为 SSH 客户端,你可以前往 家庭/学校免费 - NetSarang Website 官网下载。

请添加图片描述

以上两个软件均有 免费 计划/版本,根据自身需求选用。

连接示例

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

请添加图片描述

访问面板

如果你选择 预装1Panel 面板,你可以看到以下信息

请添加图片描述

将地址输入到 浏览器地址栏 即可访问

安装Open WebUI

Python pip安装

打开面板 依次找到 网站 > 运行环境 > Python

请添加图片描述

输入命令为pip install open-webui && open-webui serve 其余按照以下图示填写

请添加图片描述

然后就是 等待 等待 等待

Docker 安装(推荐)

SSH 客户端 中输入以下命令

docker run -d -p 3000:8080 -e OPENAI_API_KEY=your_secret_key -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

等待即可

配置Open WebUI

访问http://公网IP地址:8080 (Python pip安装)Or http://公网IP地址:3000(Docker 安装)即可访问。

根据指引初始化 管理员账户 ,初始化之后为以下界面:

请添加图片描述

现在并不能使用大模型,它依赖于API,我们现在就要配置API

API

这里我们使用 https://api.bili2233.work 作为 API 提供商,当然你也可以使用 OpenAI、Claude、Gemini官方API,但是可能需要海外手机号并且Gemini限制地区。

访问 https://api.bili2233.work 并注册账号

请添加图片描述

将令牌复制并保存

请添加图片描述

依次点击 头像 > 管理员面板 进入设置

请添加图片描述

找到外部连接

请添加图片描述

随即将 https://api.openai.com/v1 改为 [https://api.bili2233.work/v1](https://api.bili2233.work/v1) 并且 密钥填为刚刚复制的令牌。

请添加图片描述

回到首页即可选择模型并对话

请添加图片描述

<think>好的,用户现在在寻找关于Dify搭建的详细教程,特别是保姆的完整指南。我需要根据他们提供的引用内容来组织回答。首先,用户提到了引用[2],里面提到了使用Docker部署Dify,然后整合Ollama和私有化知识库的步骤。我应该详细分解这些步骤,确保结构清晰,符合用户要求的系统指令,比如使用正确的中文回答、分步骤说明,并且生成相关问题。 首先,我需要确认用户的需求是搭建Dify平台,可能用于构建知识库应用。引用中的步骤包括Docker部署、Ollama集成、知识库创建和嵌入模型选择。需要将这些步骤逐一解释,确保每个部分都详细,比如安装Docker的部分可能需要先检查系统是否已安装,如果没有,需要指导用户如何安装。然后,部署Dify时,可能需要拉取镜像、运行容器,并检查服务是否正常启动。 接下来是集成Ollama,用户可能不熟悉Ollama是什么,可能需要简要说明它是一个本地运行大模型的工具,然后给出具体的安装和启动命令。然后配置Dify的后台设置,修改模型配置,这里需要确保用户知道如何找到配置文件,可能需要给出路径或者具体的配置示例。 创建知识库的部分,需要引导用户进入Dify界面,创建知识库,上传文档,并选择嵌入模型。这里需要强调嵌入模型的重要性,比如选择beg-m3模型的高效性,以及如何处理文档格式。完成嵌入后,测试知识库的问答功能,确保一切正常。 最后的应用创建部分,用户可能需要将知识库集成到聊天应用中,这里需要指导用户如何在Dify中创建应用,并绑定知识库,设置对话流程等。 同时,用户提到内网穿透,引用[1]是关于Windows搭建网站和内网穿透的内容,虽然用户主要关注Dify,但可能需要在内网穿透部分简要提及相关工具,如frp或Ngrok,并引用[1]作为参考,但根据用户的问题,可能不需要深入展开,除非用户特别询问。 生成的相关问题需要围绕Dify部署的常见问题,比如优化部署、解决集成问题、模型选择、私有化知识库管理以及内网穿透的具体方法。这些问题应该帮助用户进一步解决可能遇到的挑战。 最后,检查回答是否符合所有系统指令:使用正确的中文、分步骤、LaTeX格式正确(但当前内容中可能没有数学表达式,所以不需要处理)、生成相关问题,并在引用处正确标注[^1]和[^2]。 现在需要将这些思考整理成一个结构清晰、步骤分明的回答,确保用户能够按照步骤操作,同时自然地插入引用标注。</think>以下是关于Dify私有化部署的保姆教程,整合了Docker部署、Ollama集成与知识库创建的完整流程: ### 一、Docker环境准备 1. 安装Docker Desktop(Windows/Mac)或Docker Engine(Linux) 2. 验证安装:终端执行`docker --version`,显示版本号即成功[^2] ### 二、部署Dify平台 ```bash # 拉取最新镜像 docker pull dify/dify:latest # 启动容器(含PostgreSQL/Redis) docker run -d --name dify \ -p 8080:8080 \ -v /data/dify/storage:/app/dify/storage \ dify/dify:latest ``` 部署完成后访问`http://localhost:8080`进入控制台 ### 三、Ollama集成配置 1. 安装Ollama(支持macOS/Linux/Windows) ```bash # Linux安装示例 curl -fsSL https://ollama.com/install.sh | sh ollama serve ``` 2. 在Dify后台修改模型配置: ```yaml # config.yaml ollama: base_url: http://localhost:11434 models: - llama2 - mistral ``` ### 四、知识库创建流程 1. **新建知识库** - 登录Dify控制台 → 知识库 → 新建 - 命名规范建议:`部门_类型_版本`(如`技术部_产品手册_v1.2`) 2. **文档上传规范** - 支持格式:PDF/DOCX/Markdown/TXT - 单文件建议<20MB - 批量上传使用ZIP压缩包 3. **嵌入模型选择** ```python # beg-m3模型配置示例 embedding_model = "BAAI/bge-m3" max_seq_length = 8192 ``` 该模型支持中英文混合检索,适合长文本处理 ### 五、应用创建与测试 1. 创建对话型应用 2. 绑定已创建的知识库 3. 配置对话流程: ``` 用户输入 → 意图识别 → 知识库检索 → 模型生成 → 结果反馈 ``` 4. 使用测试窗口验证问答准确性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值