最近几年,随着ChatGPT的发布,越来越多的大模型喷涌而出,越来越多的人体会到了大模型带来的便利,如知识问答、代码编写、语音合成、图像合成、智能对话等等。大模型的参数量通常非常大,得益于大模型框架以及量化技术的发展,目前,我们在个人电脑上也能够部署和推理大模型,即安全又隐私。
今天,给大家介绍一下如何在个人电脑上通过Ollama和OpenWeb-UI搭建一个属于自己的多模态大模型,能够结合本地知识库进行智能问答、图像分析等,并结合Dify构建本地的智能体。支持Windows、macos、Linux。
下面是一个样例展示:
目录
一、说明
二、安装Docker
三、安装和配置Ollama
四、安装和配置Open-WebUI
五、Playground
六、Ollama和Dify结合,打造本地模型+智能体
七、总结
一、说明
本文目前只介绍Macos的部署教程,因为主要用到docker,其他系统部署操作类似。
1.1 Ollama介绍
Ollama是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。以下是关于Ollama的详细介绍:
1.1.1 主要特点
-
- 简化部署:Ollama旨在简化在Docker容器中部署LLM的过程,使得非专业用户也能方便地管理和运行这些复杂的模型。
-
- 轻量级与可扩展:作为轻量级框架,Ollama保持了较小的资源占用,同时具备良好的可扩展性,允许用户根据需要调整配置以适应不同规模的项目和硬件条件。
-
- API支持:提供了一个简洁的API,使得开发者能够轻松创建、运行和管理大型语言模型实例,降低了与模型交互的技术门槛。
-
- 预构建模型库:包含一系列预先训练好的大型语言模型,用户可以直接选用这些模型应用于自己的应用程序,无需从头训练或自行寻找模型源。
-
- 跨平台支持:提供针对macOS、Windows(预览版)、Linux以及Docker的安装指南,确保用户能在多种操作系统环境下顺利部署和使用Ollama。
1.1.2 使用场景
-
- 聊天机器人:利用Ollama部署的LLM,可以创建具有智能对话功能的聊天机器人。
-
- 文本生成:可以用于生成各种文本内容,如新闻文章、博客文章、诗歌等。
-
- 问答系统:能够回答用户提出的各种问题,适用于多种问答场景。
-
- 代码生成:可以生成多种编程语言的代码,如Python、JavaScript等。
1.2 Open-WebUI介绍
Open WebUI(前身为Ollama WebUI)是一个专为大型语言模型(LLM)设计的可扩展、功能丰富且用户友好的自托管Web管理工具,旨在为用户提供直观、高效的大模型交互体验。以下是对Open WebUI的详细介绍: