MIT18.06线性代数课程笔记17:正交标准矩阵

课程简介

18.06是Gilbert Strang教授在MIT开的线性代数公开课,课程视频以及相关资料请见https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/index.htm

课程笔记

先给出正交标准矩阵的定义,然后讨论其性质,最后给出一个构造正交标准矩阵的方法。

1. 正交标准矩阵 Orthonormal Matrix

当一个矩阵 Q 满足QTQ=I,则称其为orthonormal的。
具体地,设 Qn×m=[q1,q2,,qm] ,则有 qTiqj=0,ij ,此为正交;以及 qTiqi=1 ,此为标准。
即所有列向量之间正交,而且每个列向量长度为1。

2. 相关性质

Q 为方阵,则Q1=QT
Q 列满秩,因为正交必然不相关。
到column space的投影矩阵P=Q(QTQ)1QTx=QQTx。也可以通过 p=mi=1(qTix)qi 得到,即等于投影到各个列向量的和,因为各个列向量是正交的。

3. 构造正交标准矩阵

具体地,从任意矩阵 An×m ,构造矩阵 Q 满足C(A)=C(Q)而且 QTQ=I 。为了简化步骤,假设 A 列满秩。
方法非常简单,逐渐增加基向量的数量,一直满足基向量长度为1,相互正交。
初始状态加入归一化的第一列到基向量集合。
i步( 2im )加入向量 aiPai 长度为1的结果。其中 P 为已有基向量构造子空间的投影矩阵。
最终基向量并起来的矩阵即为Q
注意到上诉做法均为对 A 列向量的线性组合,所以column space不变。同时所有的变化可以表示为可逆的变化矩阵M,满足 Q=AM 。进而存在矩阵 R=M1 满足 A=QR 。因为上诉构造方法中第 i 步只使用A的前 i 个列向量,所以R是上三角矩阵。上三角的性质也可以通过 rij=aTjqi 验证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值