行人计数,计次系统

本文介绍了使用OpenCV实现行人计数和计次的思路。通过前后帧差分减少误检,HOG行人检测,以及行人框的临近匹配进行跟踪。遇到的问题包括 Hog 检测的误检率、camshift 的单目标跟踪限制,以及行人走出视野的判断。文章还提到了后续可能的人脸检测和人脸识别来提升计次准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前两周左右一个公司让我们写一下demo实现行人计数和某个人计次的功能,到现在为止效果不太好,但是还是有必要记一下我们的思路。

说到行人计数的话,肯定是要有行人检测和行人跟踪两部分的,网上搜了一下,opencv里面有两种检测的方法,一种叫做hog变换,另一种是haar人形检测的方法。后一种方法我没有测试,但是从之前haar方法的人脸检测的效果来看,行人检测的误检率肯定也蛮高的。行人跟踪方面没有找到合适的代码,opencv里有meanshift和camshift两种跟踪方法,这两种方法大同小异,理论上可以跟踪任何物体。但是因为是采用的颜色直方图信息,所以如果行人走动的背景较为复杂,很难判断这个行人是否走出视野。最要命的是,camshift只能实现单目标跟踪,也就是说有很多人一起走的时候就不灵了,上周想将camshift改成多目标跟踪,但是一点思路都没有。

也就是到目前为止博主不知道有什么现成的跟踪方法来跟踪行人,好办法没有笨办法倒是还能想到的。撸主的想法是这样的,检测前后帧里的行人框(hog方法会将行人以方框圈出,并返回方框数据)比对方框是否临近(可以按照所检测到的方框的宽度作为检测的阈值,比如上一帧的某个方框宽度为50pix,而在当前位置下人走一步的宽度基本是不会超过50pix的)如果临近,那说明前后帧所圈出

### 使用YOLOv8实现双向计数的功能 #### 基本原理 YOLOv8 是一种高效的实时目标检测框架,能够快速识别并定位视频中的对象。为了实现行人或其他目标的双向计数功能,通常需要结合目标检测和跟踪技术来完成完整的流程[^3]。 以下是具体的技术细节: #### 1. 目标检测 利用 YOLOv8 对视频帧中的行人进行检测。通过加载预训练权重文件或自定义训练模型,可以高效地获取每一帧中行人的位置信息(边界框坐标)。这一步骤的核心在于确保高精度的目标检测性能[^4]。 ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练模型 results = model.predict(source='video.mp4', stream=True, conf=0.5) ``` 上述代码展示了如何使用 `ultralytics` 库加载 YOLOv8 模型并对视频源执行预测操作。 --- #### 2. 目标跟踪 仅依靠目标检测无法区分同一行人多个帧的情况,因此引入 DeepSort 或其他类似的多目标跟踪算法是非常必要的。DeepSort 能够根据外观特征和运动轨迹估计,为每个检测到的对象分配唯一的 ID[^2]。 安装依赖库后,可以通过以下方式集成 DeepSort 和 YOLOv8: ```bash pip install deep_sort_pytorch ``` 接着编写脚本来融合两者功能: ```python import cv2 from deep_sort_realtime.deepsort_tracker import DeepSort from ultralytics import YOLO tracker = DeepSort(max_age=30) def process_frame(frame): results = model(frame)[0].boxes.data.cpu().numpy() detections = [] for res in results: bbox = res[:4] confidence = res[4] class_id = int(res[5]) if class_id == 0 and confidence > 0.5: # 只处理行人类别 detections.append(([bbox], confidence, class_id)) tracks = tracker.update_tracks(detections, frame=frame) # 更新跟踪状态 return tracks ``` 此部分逻辑负责提取每帧中的行人检测结果,并将其传递给 DeepSort 进行进一步分析。 --- #### 3. 绘制虚拟线与统计方向 为了计算进入和离开区域的人数,可以在场景中设置一条或多条虚拟直线作为分界线。当某个被追踪对象首次穿越这条线时记录其移动方向,并更新对应计数值。 假设我们有一条水平放置的分割线,则判断条件如下所示: ```python line_position_y = 300 # 设定虚拟线的位置 for track in tracks: if not track.is_confirmed(): continue bbox = track.to_tlbr() # 获取当前目标边框 centroid_x = (bbox[0] + bbox[2]) / 2 centroid_y = (bbox[1] + bbox[3]) / 2 if track.direction is None: if centroid_y < line_position_y: track.direction = 'up' elif centroid_y >= line_position_y: track.direction = 'down' if track.crossed_line(line_position_y): # 自定义方法用于检测是否越线 count_up += 1 if track.direction == 'up' else 0 count_down += 1 if track.direction == 'down' else 0 ``` 这里的关键点是如何准确判定一个人何时真正穿过指定界限以及朝哪个方向前进[^1]。 --- #### 4. 显示最终结果 最后将所有统计数据叠加显示在原始画面上供用户查看效果。 ```python cv2.line(frame, pt1=(0, line_position_y), pt2=(width, line_position_y), color=(0, 255, 0), thickness=2) cv2.putText(frame, f"Up Count: {count_up}", org=(10, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 255, 0), thickness=2) cv2.putText(frame, f"Down Count: {count_down}", org=(10, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, color=(0, 0, 255), thickness=2) ``` 以上即完成了整个基于 Python 和 YOLOv8 的行人双向计数系统的开发过程。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值