本章概要
本章开始涉及编程练习,这里采用Python-sklearn的方式,环境搭建可参考 数据挖掘入门:Python开发环境搭建(eclipse-pydev模式).
相关答案和源代码托管在我的Github上:PY131/Machine-Learning_ZhouZhihua.
本章讲述线性模型(linear model),相关内容包括:
- 线性回归(linear regression)
序关系(order)、均方差(square error)最小化、欧式距离(Euclidean distance)、最小二乘法(least square method)、参数估计(parameter estimation)、多元线性回归(multivariate linear regression)、广义线性回归(generalized linear model)、对数线性回归(log-linear regression);
- 对数几率回归(逻辑回归)(logistic regression)
分类、Sigmoid函数、对数几率(log odds / logit)、极大似然法(maximum likelihood method);
- 线性判别分析(linear discriminant analysis - LDA)
类内散度(within-class scatter)、类间散度(between-class scatter);
- 多分类学习(multi-classifier)
拆解法,一对一(One vs One - OvO)、一对其余(OvR)、多对多(MvM)、纠错输出码(ECOC)、编码矩阵&#