周志华《机器学习》课后习题解答系列(六):Ch5.7 - RBF网络实验

本文详细介绍了RBF神经网络的基础知识,包括径向基函数和网络结构,并通过Python实现了一个RBF-BP算法解决异或问题的实验。实验展示了RBF网络的快速收敛性和优秀的泛化能力。此外,还探讨了RBF网络的中心获取方法以及与SVM的联系。
摘要由CSDN通过智能技术生成

相关答案和源代码托管在我的Github上:PY131/Machine-Learning_ZhouZhihua.

5.7. RBF神经网络实验

这里写图片描述

注:本题程序基于Python实现(这里查看完整代码和数据集)。

1. RBF网络基础

RBF网络采用RBF(Radial Basis Function函数)作为隐层神经元激活函数,是一种局部逼近神经网络,下面先分析其激活函数RBF,然后分析RBF神经网络的结构。

1.1. 径向基函数(RBF)

径向基函数是一类取值依赖样本于到中心点距离的函数,本题基于常用的高斯径向基函数(gaussian RBF)开展实验。下面是高斯径向基函数形式书p108式(5.19):

这里写图片描述

这里的 β 为尺度系数, c_i 为中心点(维度由输入决定),函数的取值取决于样本 x 到中心点的距离(2-范数),该函数的参数为 (β, c_i)。

如下图示为高斯径向基函数示意图(绘图程序):

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值