周志华《机器学习》课后习题解答系列(六):Ch5.8 - SOM网络实验

本文详细介绍了SOM(self-organizing map)神经网络的基础概念、工作机理和训练算法,通过Python和Matlab实现对西瓜数据集的聚类分析。实验表明,SOM网络在数据降维和聚类中表现出优势,无需预先指定类别数量。
摘要由CSDN通过智能技术生成

本系列相关答案和源代码托管在我的Github上:PY131/Machine-Learning_ZhouZhihua.

SOM神经网络实验

这里写图片描述

注:本题程序分别基于Python和Matlab实现(这里查看完整代码和数据集)。

1 基础概述

1.1 SOM网络概念

SOM(Self-Organizing Map,自组织映射)网络是一种无监督竞争型神经网络,常用于数据的聚类和降维分析。它从仿生学中引出,模拟了面临不同输入模式时生物神经组织的兴奋机理。SOM神经网络最初由Kohonen提出,所以也常把SOM网络称为Kohonen网络

SOM神经网络通过自组织映射(SOM),将高维的输入数据映射到低维空间,从而实现了特征空间的降维,同时保持了输入数据在高维空间中的拓扑结构。下图为最常见的输出层为二维的SOM神经网络:

这里写图片描述

SOM网络经过训练之后,输出层各神经元及其参数反映的是输入数据的模式聚合。

1.2 SOM网络工作机理

SOM工作机理分为三大部分:

  • 竞争(Competition)
  • 协同(Cooperation)
  • 适应(Adaption)

下面对工作机制进行概要讨论(这里以上图5.11所示输出层为二维的Kohonen网络为例):

1. 参数

先明确网络所涉及的数据和参数(即要通过数据学习的对象):

数据:
    输入层:D 个输入变量记为 x = {x_i: i=1,…,D};
    输出层:N*M 个输出变量记为
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值