Machine Learning---感知器学习算法
引言
这里开始介绍神经网络方面的知识(Neural Networks)。首先我们会介绍几个监督式学习的算法,随后便是非监督式的学习。
一、感知器学习算法基本介绍
1.神经网络
就像进化计算,神经网络又是一个类似的概念。神经网络由一个或者多个神经元组成。而一个神经元包括输入、输出和“内部处理器”。神经元从输入端接受信息,通过“内部处理器”将这些信息进行一定的处理,最后通过输出端输出。
2.感知器
感知器(Perceptron),是神经网络中的一个概念,在1950s由Frank Rosenblatt第一次引入。
3.单层感知器
单层感知器(Single Layer Perceptron)是最简单的神经网络。它包含输入层和输出层,而输入层和输出层是直接相连的。
图1.1
图1.1便是一个单层感知器,很简单一个结构,输入层和输出层直接相连。
接下来介绍一下如何计算输出端。
利用公式1计算输出层,这个公式也是很好理解。首先计算输入层中,每一个输入端和其上的权值相乘,然后将这些乘机相加得到乘机和。对于这个乘机和做如下处理,如果乘机和大于临界值(一般是0),输入端就取1;如果小于临界值,就取-1。
以下就给出一段单层感知器的代码。
//
//singlelayer perceptrons(SLP)
bool slp_calculate_output(constdouble * inputs,constdouble * weights,intnInputs,int & output)
{
if(NULL ==inputs || NULL == weights)
return false;
double sum =0.0;
for (int i = 0 ; i < nInputs ; ++i)
{
sum += (weights[i] * inputs[i]);
}
//这里我们对乘机和的处理:如果大于0,则输出值为1;其他情况,输出值为-1
if(sum >0.0)
output = 1;
else
output = -1;
}
//
单层感知器其简单的特性,可以提供快速的计算。它能够实现逻辑计算中的NOT、OR、AND等简单计算。
但是对于稍微复杂的异或就无能无力。下面介绍的多层感知器,就能解决这个问题。
4.多层感知器
多层感知器(Multi-Layer Perceptrons),包含多层计算。
相对于单层感知器,输出端从一个变到了多个;输入端和输出端之间也不光只有一层,现在又两层:输出层和隐藏层。
图2.2
图2.2就是一个多层感知器。
对于多层感知器的计算也是比较简单易懂的。首先利用公式1计算每一个。
看一下它代码,就能明白它的工作原理。
//
//Multi-Layerperceptrons(MLP)
const unsignedint nInputs =4;
const unsignedint nOutputs = 3;
const unsignedint nHiddens = 4;
struct mlp
{
doubleinputs[nInputs+1];//多一个,存放的bias,一般存放入1
doubleoutputs[nOutputs];
doublehiddens[nHiddens+1]; //多一个,存放的bias,一般存放入1
doubleweight_hiddens_2_inputs[nHiddens+1][nInputs+1];
doubleweight_outputs_2_hiddens[nOutputs][nHiddens+1];
};
//这里我们对乘机和的处理:如果大于0,则输出值为1;其他情况,输出值为-1
double sigmoid (double val)
{
if(val >0.0)
return1.0;
else
return-1.0;
}
//计算输出端
bool mlp_calculate_outputs(mlp * pMlp)
{
if(NULL ==pMlp)
return false;
double sum =0.0;
//首先计算隐藏层中的每一个结点的值
for (int h = 0 ; h < nHiddens ; ++h)
{
doublesum = 0.0;
for (int i = 0 ; i < nInputs + 1 ; ++i)
{
sum += pMlp->weight_hiddens_2_inputs[h][i]*pMlp->inputs[i];
}
pMlp->hiddens[h] = sigmoid (sum);
}
//利用隐藏层作为“输入层”,计算输出层
for (int o = 0 ; o < nOutputs ; ++o)
{
doublesum = 0.0;
for (int h = 0 ; h < nHiddens + 1 ; ++h)
{
sum += pMlp->weight_outputs_2_hiddens[o][h]*pMlp->hiddens[h];
}
pMlp->outputs[o] = sigmoid (sum);
}
return true;
}
//
二、感知器学习算法
1.感知器学习
其实感知器学习算法,就是利用第一节介绍的单层感知器。首先利用给的正确数据,计算得到输出值,将输出值和正确的值相比,由此来调整每一个输出端上的权值。
公式2便是用来调整权值,首先 是一个“学习参数”,一般我将它设置成小于1的正数。T便是训练数据中的正确结果, 便是第i个输入端的输入值,
便是第i个输入端上面的权值。
2.代码
对于其介绍,我还是附上代码。
//
//PerceptronLearning Algorithm(PLA)
const unsignedint nTests =4; //训练数据的数量
const unsignedint nInputs =2; //输入端的数量
const double alpha =0.2; //学习参数
struct slp
{
doubleinputs[nInputs];
doubleoutput;
}; //单层感知器
//计算输出值
int compute(double *inputs,double * weights)
{
double sum =0.0;
for (int i = 0 ; i < nInputs; ++i)
{
sum += weights[i]*inputs[i];
}
//bias
sum += 1.0 * weights[nInputs];
if(sum >0.0)
return1;
else
return-1;
}
//
int _tmain(int argc,_TCHAR* argv[])
{
//正确的训练数据
slp slps[nTests] = {
{-1.0,-1.0,-1.0},
{-1.0, 1.0, 1.0},
{ 1.0,-1.0, 1.0},
{ 1.0, 1.0, 1.0}
};
doubleweights[nInputs + 1] = {0.0};
boolbLearningOK = false;
//感知器学习算法
while(!bLearningOK)
{
bLearningOK = true;
for (int i = 0 ; i < nTests ; ++i)
{
intoutput = compute(slps[i].inputs,weights);
if(output!= (int)slps[i].output)
{
for(int w = 0 ; w < nInputs ; ++w)
{
weights[w] += alpha *slps[i].output * slps[i].inputs[w];
}
weights[nInputs] += alpha *slps[i].output ;
bLearningOK = false;
}
}
}
for(int w = 0 ; w < nInputs + 1 ; ++w)
{
cout<<"weight"<<w<<":"<<weights[w] <<endl;
}
cout<<"\n";
for (int i = 0 ;i < nTests ; ++i)
{
cout<<"rightresult:"<<slps[i].output<<"\t";
cout<<"caculateresult:" << compute(slps[i].inputs,weights)<<endl;
}
//
char temp ;
cin>>temp;
return 0;
}
2.效果图
下面附上运行效果图
三、总结
感知器学习算法,算是神经网络中的最简单的学习算法。但是通过这个进入学习神经网络学习算法,是个不错的选择。
感知器学习算法,只要是利用了单层感知器。这篇文章中,我们还了解到了另一种感知器:多层感知器。多层感知器主要是用于方向传播学习算法中,这个我后面的文章中会进行介绍。
由于笔者不是专门研究人工智能方面,所以在写这些文章的时候,肯定会有一些错误,也请谅解,上面介绍中有什么错误或者不当地方,敬请指出,不甚欢迎。
如果有兴趣的可以留言,一起交流一下算法学习的心得。
声明:本文章是笔者整理资料所得原创文章,如转载需注明出处,谢谢。