狄利克雷卷积及莫比乌斯反演定理

在数论函数集上,狄利克雷卷积定义为如下的二元运算
(f*g)(n)=d|nΣf(d)g(n/d)

狄利克雷卷积运算满足交换律,结合律,分配律

在数论函数集上,存在单位元函数ε(n)满足ε(1)=1 ε(n)=0(n>1)
使得(f*ε)=(ε*f)=f

而常值函数1(n)则定义为1(n)=1

一个数论函数f(n)与1(n)的狄利克雷卷积并不是f(n)自身,而是一个常见的式子
(f*1)(n)=d|nΣf(d)

那么如果我们已知一个函数g(n)=d|nΣf(d),该如何求得f(n)呢

通常,可以使用莫比乌斯反演定理:
f(n)=d|nΣμ(d)g(n/d)

但是为什么可以这样呢?而且为什么这个式子长得那么像狄利克雷卷积呢

实际上,μ(n)有个重要的性质:
d|nΣμ(d)=[n=1]
也就是说(μ*1)(n)=ε(n)
在数论函数集上,μ(n)是1(n)的狄利克雷逆函数

因此(μ*g)(n)=(μ*f*1)(n)=f(n)
这就从另一个角度验证了莫比乌斯反演定理

本文最后再简单介绍下狄利克雷卷积逆函数的求法:
为了简单起见,这里用f-1表示f的狄利克雷逆
n=1时:
(f*f-1)(1)=f(1)f-1(1)=ε(1)=1
因此 f-1(1)=1/f(1)
这说明了如果f(1)为0,则不存在狄利克雷逆
n=2时:
(f*f-1)(2)=f(1)f-1(2)+f(2)f-1(1)=ε(2)=0
因此 f-1(2)=-f(2)f-1(1)/f(1)
n=3时:
(f*f-1)(3)=f(1)f-1(3)+f(3)f-1(1)=ε(3)=0
因此 f-1(3)=-f(3)f-1(1)/f(1)
n=4时:
(f*f-1)(4)=f(1)f-1(4)+f(2)f-1(2)+f(4)f-1(1)=ε(4)=0
因此 f-1(4)=-(f(2)f-1(2)+f(4)f-1(1))/f(1)

对于所有n>1,有:
f-1(n)=-(d|n且d>1Σf(d)f-1(n/d))/f(1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值