双显卡UBuntu16.04安装Caffe

本文详细介绍了在Ubuntu16.04系统中,如何在双显卡环境下安装CUDA、cuDNN、opencv3.1以及Caffe。步骤包括禁用nouveau、安装CUDA,配置环境变量,下载并安装cuDNN,编译安装opencv3.1,以及解决在安装Caffe过程中遇到的问题。最后,通过测试确保所有组件正确安装并能正常工作。
摘要由CSDN通过智能技术生成

双显卡UBuntu16.04安装Caffe

2017年2月2日记

Ubuntu16.04 + CUDA8.0 + CUDNN +opencv3.1 + Caffe

作者已经装过N遍caffe了,苦逼的原因是因为双显卡的电脑,集成显卡+独立显卡(ntel核显以及Nvidia GEFORCE GTX860M显卡),在Ubuntu14.04下安装CUDA会出现比如循环登录、启动后黑屏等问题。比如如下问题(所以为了避免入坑,赶紧装Ubuntu16.04):

1.启动后电脑黑屏,不能进行任何操作(可能还有救)。

在grub界面选择要登录的系统按“e”,进入编辑界面,在倒数第二行末尾加入acpi_osi=Linux nomodeset,具体操作可以上网查。

2.启动后电脑黑屏但是可以通过CTRL+ALT+F1(我的电脑是CTRL+ALT+F4)进入命令行模式(可能还有救)。

删除所有nvidia,sudo apt-get remove  nvidia*,然后重启。

3.进入登录界面,然后不断地让你登录,一直登录不进去,进入命令行也一直闪烁(可能没救了)。

但是这个问题在Ubuntu16.04就得到了解决,所以,如果你的电脑是双显卡的话,just do it!

忽略上面的命令啊,那个只是Ubuntu14.04的抢救措施。装好了Ubuntu16.04,开始吧:

1.首先安装CUDA

a.首先安装一些依赖

sudo apt-get update

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

sudo apt-get install git cmake build-essential

b.安装好之后需要禁用nouveau,创建/etc/modprobe.d/blacklist-nouveau.conf,写入:

blacklist nouveau option nouveau modeset=0

然后执行sudo update-initramfs -u

c.配置一些基本的环境变量

vim ~/.bashrc

加入:

export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH 

到这里之后有些教程会让我们上NVIDIA官网上看我们的GPU型号应该用什么版本的驱动,其实不需要;另外有些教程会让我们把gcc和g++版本降低,比如降低为gcc-4.9和g++-4.9,其实不需要,Ubuntu16.04的默认gcc和g++版本就为5.4版本,而CUDA8.0目前也支持此版本。

d.然后我们需要下载CUDA(https://developer.nvidia.com/cuda-downloads),这个网址

image

e.安装cuda有点讲究

下载完成后重启电脑,在出现登录界面时,登录tty1,按Ctrl + Alt + F1,在文本模式中登录.

关闭桌面服务

sudo service lightdm stop。

这步对于安装Nvidia驱动至关重要

进入下载cuda文件的目录执行:

sudo sh cuda-8.0.44_linux.run --no-opengl-libs

如果不加–no-opengl-libs应该是会出现循环登录问题

安装过程中完全按照它的指引就可以了,先输入accept,然后一连串的yes就可以。

Accept EULA conditions

Say YES to installing the NVIDIA driver

Say YES to installing CUDA Toolkit + Driver

Say YES to installing CUDA Samples等等。

然后重启,这个时候没有循环登录问题,正常进入桌面。

f.修改环境配置

vim ~/.bashrc

加上:export PATH=/usr/local/cuda-8.0/bin:$PATH

     export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

刷新配置执行

source ~/.bashrc

g.测试CUDA的samples:

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery

sudo make

./deviceQuery

会看到你的GPU信息,如果看到,说明CUDA安装成功。

2.配置cuDNN

cuDNN是GPU加速计算深层神经网络的库。

(a)首先去官网(https://developer.nvidia.com/rdp/cudnn-download)下载cuDNN,需要注册一个账号才能下载

image

(b)下载cuDNN5.1之后进行解压,cd进入cuDNN5.1解压之后的cuda/include目录,在命令行进行如下操作:

sudo cp cudnn.h /usr/local/cuda/include/ #复制头文件

(c)再将cd进入lib64目录下的动态文件进行复制和链接:

sudo cp lib* /usr/local/cuda/lib64/ #复制动态链接库
cd /usr/local/cuda/lib64/sudo rm -rf libcudnn.so libcudnn.so.5 #删除原有动态文件
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 #生成软衔接
sudo ln -s libcudnn.so.5 libcudnn.so #生成软链接

3.安装opencv3.1

博主这个时候就有点SB了,opencv可以apt-get,我当时却自己编译的,不过还好,只有一个坑。

从官网(http://opencv.org/downloads.html)下载Opencv,并将其解压到你要安装的位置。

在你的OpenCV目录下

mkdir build # 创建编译好的文件目录

cd build

配置:

cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..

编译:

make -j8 #-j8表示并行计算,根据自己电脑的配置进行设置,配置比较低的电脑可以将数字改小或不使用,直接输make。

以上只是将opencv编译成功,还没将opencv安装,需要运行下面指令进行安装:

sudo make install
  • 可能出现的错误,编译opencv遇到的坑:

image

类似此类错误,应该在进度92%处出现。

modules/cudalegacy/src/graphcuts.cpp:120:54: error: 
‘NppiGraphcutState’ has not been declared
typedef NppStatus (*init_func_t)(NppiSize oSize, 
NppiGraphcutState** ppState, Npp8u* pDeviceMem);

这是因为opecv3.1与cuda8.0不兼容导致的。解决办法:

修改 ~/opencv/modules/cudalegacy/src/graphcuts.cpp文件内容,如图:

image

4.安装Caffe

不建议安装Anaconda,我开始安装Anaconda,但是出现问题,后来使用原生态的python就OK了。

遇到了什么问题呢?下图:

image

caffe的GitHub的issue也有问题的解决方法:

https://github.com/BVLC/caffe/issues/985

我按照GitHub所说,执行

rm ~/anaconda/lib/libm.*

后无卵用,我就用原生态的Python接口了,很方便配置。所以忽略Anaconda,直接安装Caffe。

下面安装Caffe:

1)将终端cd到要安装caffe的位置。

2)从github上获取caffe:

git clone https://github.com/BVLC/caffe.git

3)因为make指令只能make Makefile.config文件,而Makefile.config.example是caffe给出的makefile例子,因此,首先将Makefile.config.example的内容复制到Makefile.config:

sudo cp Makefile.config.example Makefile.config

4)打开并修改配置文件:

sudo gedit Makefile.config #打开Makefile.config文件
修改文件:

a.若使用cudnn,则:

将
#USE_CUDNN := 1
修改成: 
USE_CUDNN := 1

b.因为opencv版本是3的,则

将
#OPENCV_VERSION := 3 
修改为: 
OPENCV_VERSION := 3

c.若要使用Python来编写layer,则

将
#WITH_PYTHON_LAYER := 1 
修改为 
WITH_PYTHON_LAYER := 1

d. 重要的一项 :

将# Whatever else you find you need goes here.下面的

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib 
修改为: 
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial       

这是因为ubuntu16.04的文件包含位置发生了变化,尤其是需要用到的hdf5的位置,所以需要更改这一路径.

5)修改makefile文件,打开makefile文件,做如下修改:

将:
NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)
替换为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

在Makefile文件的第173行,把 hdf5_hl 和hdf5修改为hdf5_serial_hl 和 hdf5_serial,也就是把下面第一行代码改为第二行代码。

将:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
改为:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial

6)编辑/usr/local/cuda/include/host_config.h

将其中的第115行注释掉:

将
#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
改为
//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!

7)编译

make all -j8 #-j根据自己电脑配置决定

sudo make runtest -j8 # 跑test

image

sudo make pycaffe -j8 #编译pycaffe

然后,配置环境变量,将caffe/python加到环境变量里去,然后输入Python:

import caffe

image

开开心心去玩耍吧!

Reference :

1.http://blog.csdn.net/xuzhongxiong/article/details/52717285

2.http://blog.csdn.net/t5131828/article/details/53258925

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值