双显卡UBuntu16.04安装Caffe
2017年2月2日记
Ubuntu16.04 + CUDA8.0 + CUDNN +opencv3.1 + Caffe
作者已经装过N遍caffe了,苦逼的原因是因为双显卡的电脑,集成显卡+独立显卡(ntel核显以及Nvidia GEFORCE GTX860M显卡),在Ubuntu14.04下安装CUDA会出现比如循环登录、启动后黑屏等问题。比如如下问题(所以为了避免入坑,赶紧装Ubuntu16.04):
1.启动后电脑黑屏,不能进行任何操作(可能还有救)。
在grub界面选择要登录的系统按“e”,进入编辑界面,在倒数第二行末尾加入acpi_osi=Linux nomodeset,具体操作可以上网查。
2.启动后电脑黑屏但是可以通过CTRL+ALT+F1(我的电脑是CTRL+ALT+F4)进入命令行模式(可能还有救)。
删除所有nvidia,sudo apt-get remove nvidia*,然后重启。
3.进入登录界面,然后不断地让你登录,一直登录不进去,进入命令行也一直闪烁(可能没救了)。
但是这个问题在Ubuntu16.04就得到了解决,所以,如果你的电脑是双显卡的话,just do it!
忽略上面的命令啊,那个只是Ubuntu14.04的抢救措施。装好了Ubuntu16.04,开始吧:
1.首先安装CUDA
a.首先安装一些依赖
sudo apt-get update
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install git cmake build-essential
b.安装好之后需要禁用nouveau,创建/etc/modprobe.d/blacklist-nouveau.conf,写入:
blacklist nouveau option nouveau modeset=0
然后执行sudo update-initramfs -u
c.配置一些基本的环境变量
vim ~/.bashrc
加入:
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
到这里之后有些教程会让我们上NVIDIA官网上看我们的GPU型号应该用什么版本的驱动,其实不需要;另外有些教程会让我们把gcc和g++版本降低,比如降低为gcc-4.9和g++-4.9,其实不需要,Ubuntu16.04的默认gcc和g++版本就为5.4版本,而CUDA8.0目前也支持此版本。
d.然后我们需要下载CUDA(https://developer.nvidia.com/cuda-downloads),这个网址
e.安装cuda有点讲究
下载完成后重启电脑,在出现登录界面时,登录tty1,按Ctrl + Alt + F1,在文本模式中登录.
关闭桌面服务
sudo service lightdm stop。
这步对于安装Nvidia驱动至关重要
进入下载cuda文件的目录执行:
sudo sh cuda-8.0.44_linux.run --no-opengl-libs
如果不加–no-opengl-libs应该是会出现循环登录问题
安装过程中完全按照它的指引就可以了,先输入accept,然后一连串的yes就可以。
Accept EULA conditions
Say YES to installing the NVIDIA driver
Say YES to installing CUDA Toolkit + Driver
Say YES to installing CUDA Samples等等。
然后重启,这个时候没有循环登录问题,正常进入桌面。
f.修改环境配置
vim ~/.bashrc
加上:export PATH=/usr/local/cuda-8.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
刷新配置执行
source ~/.bashrc
g.测试CUDA的samples:
cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
会看到你的GPU信息,如果看到,说明CUDA安装成功。
2.配置cuDNN
cuDNN是GPU加速计算深层神经网络的库。
(a)首先去官网(https://developer.nvidia.com/rdp/cudnn-download)下载cuDNN,需要注册一个账号才能下载
(b)下载cuDNN5.1之后进行解压,cd进入cuDNN5.1解压之后的cuda/include目录,在命令行进行如下操作:
sudo cp cudnn.h /usr/local/cuda/include/ #复制头文件
(c)再将cd进入lib64目录下的动态文件进行复制和链接:
sudo cp lib* /usr/local/cuda/lib64/ #复制动态链接库
cd /usr/local/cuda/lib64/sudo rm -rf libcudnn.so libcudnn.so.5 #删除原有动态文件
sudo ln -s libcudnn.so.5.1.5 libcudnn.so.5 #生成软衔接
sudo ln -s libcudnn.so.5 libcudnn.so #生成软链接
3.安装opencv3.1
博主这个时候就有点SB了,opencv可以apt-get,我当时却自己编译的,不过还好,只有一个坑。
从官网(http://opencv.org/downloads.html)下载Opencv,并将其解压到你要安装的位置。
在你的OpenCV目录下
mkdir build # 创建编译好的文件目录
cd build
配置:
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
编译:
make -j8 #-j8表示并行计算,根据自己电脑的配置进行设置,配置比较低的电脑可以将数字改小或不使用,直接输make。
以上只是将opencv编译成功,还没将opencv安装,需要运行下面指令进行安装:
sudo make install
- 可能出现的错误,编译opencv遇到的坑:
类似此类错误,应该在进度92%处出现。
modules/cudalegacy/src/graphcuts.cpp:120:54: error:
‘NppiGraphcutState’ has not been declared
typedef NppStatus (*init_func_t)(NppiSize oSize,
NppiGraphcutState** ppState, Npp8u* pDeviceMem);
这是因为opecv3.1与cuda8.0不兼容导致的。解决办法:
修改 ~/opencv/modules/cudalegacy/src/graphcuts.cpp文件内容,如图:
4.安装Caffe
不建议安装Anaconda,我开始安装Anaconda,但是出现问题,后来使用原生态的python就OK了。
遇到了什么问题呢?下图:
caffe的GitHub的issue也有问题的解决方法:
https://github.com/BVLC/caffe/issues/985
我按照GitHub所说,执行
rm ~/anaconda/lib/libm.*
后无卵用,我就用原生态的Python接口了,很方便配置。所以忽略Anaconda,直接安装Caffe。
下面安装Caffe:
1)将终端cd到要安装caffe的位置。
2)从github上获取caffe:
git clone https://github.com/BVLC/caffe.git
3)因为make指令只能make Makefile.config文件,而Makefile.config.example是caffe给出的makefile例子,因此,首先将Makefile.config.example的内容复制到Makefile.config:
sudo cp Makefile.config.example Makefile.config
4)打开并修改配置文件:
sudo gedit Makefile.config #打开Makefile.config文件
修改文件:
a.若使用cudnn,则:
将
#USE_CUDNN := 1
修改成:
USE_CUDNN := 1
b.因为opencv版本是3的,则
将
#OPENCV_VERSION := 3
修改为:
OPENCV_VERSION := 3
c.若要使用Python来编写layer,则
将
#WITH_PYTHON_LAYER := 1
修改为
WITH_PYTHON_LAYER := 1
d. 重要的一项 :
将# Whatever else you find you need goes here.下面的
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
修改为:
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
这是因为ubuntu16.04的文件包含位置发生了变化,尤其是需要用到的hdf5的位置,所以需要更改这一路径.
5)修改makefile文件,打开makefile文件,做如下修改:
将:
NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS)
替换为:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
在Makefile文件的第173行,把 hdf5_hl 和hdf5修改为hdf5_serial_hl 和 hdf5_serial,也就是把下面第一行代码改为第二行代码。
将:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
改为:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
6)编辑/usr/local/cuda/include/host_config.h
将其中的第115行注释掉:
将
#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
改为
//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported!
7)编译
make all -j8 #-j根据自己电脑配置决定
sudo make runtest -j8 # 跑test
sudo make pycaffe -j8 #编译pycaffe
然后,配置环境变量,将caffe/python加到环境变量里去,然后输入Python:
import caffe
开开心心去玩耍吧!
Reference :
1.http://blog.csdn.net/xuzhongxiong/article/details/52717285