线性代数导论11——矩阵空间、秩1矩阵和小世界图

本文是Gilbert Strang的线性代数导论课程笔记。课程地址: http://v.163.com/special/opencourse/daishu.html  
第十一课时:矩阵空间、秩1矩阵和小世界图

矩阵空间
矩阵空间,可看着是新的向量空间,比如3×3的矩阵,它们加法或数乘都停留在3×3矩阵空间,3×3矩阵有一些子空间:3×3对称矩阵的子空间(两个对称矩阵相加还是对称的,数乘对称矩阵还是对称的),3×3的上三角矩阵的子空间。考查它们的基,维数

M:3×3的所有矩阵,它的维数是9,一组基是:
事实上,我们的空间几乎与9维空间相同,只是9个数字是写为一个方阵而不是一列。

S:3×3的对称矩阵,这个子空间的基和维数是怎样的
维数是6,一组基是:对角线三个元素和对角线以上的3个元素分别为1其余为0的6个矩阵(由这6个矩阵就可以得到所有的3×3的对称矩阵了,因为下三角的元素可由上三角的元素可知结果)

U:3×3的上三角矩阵,这个子空间的基和维数是怎样的
维数是6,一组基是:上三角的6个元素分别为1其余为0.

对于其他子空间,如何找到它的维数和基?
S∩U 对称矩阵交上三角矩阵 维数是3(就只有对角线上有非0元素)
S+U (注意不是S∪U,因为它不构成子空间) 取S内任一元素(矩阵)加上U内任一元素(矩阵)即可,它可以得到所有3×3矩阵,而很明显它的维数是9,dim(S)+dim(U)=dim(S∩U)+dim(S+U)=6+6=3+9。

看一种没有向量的向量空间,来自微分方程(要点在于有些东西不像向量,但我们可以称它们为向量,可以做加法,数乘,线性组合,这就是为什么线性代数、基、维度等概念不仅仅用于我们一直讨论的m×n矩阵)。
如上微分方程,它的解是什么,解空间(零空间)是什么,用解空间来描述这个微分方程的所有解:
这是一个向量空间,一组基:cosx,sinx(就像Ax=0的特殊解),维度是2。

秩1矩阵
回到重点,矩阵的关键数字——矩阵的秩,秩为1的矩阵 
所有秩1的矩阵都可表示为一列乘以一行的形式:A=UVT,U是列向量,V也是列向量
秩1矩阵可以就像搭建其他矩阵的积木一样,如果有5×17的矩阵,秩为4,可以把这5×17的矩阵分解为4个秩1矩阵的组合。

问题:秩1矩阵组成的集合是子空间吗?
假设矩阵空间M=所有5×17的矩阵,一个由秩4矩阵组成的子集,子集中两个矩阵相加结果很可能是一个秩5矩阵,而不是秩4矩阵。由秩1矩阵组成的子集,相加结果很可能是一个秩2矩阵。这说明,它的秩1矩阵组成的子集不是子空间。

问题: 假设R4中,假设各分量之和为零的所有向量构成的集合S,如下,
满足这个条件的向量,能否构成一个子空间?能,因为这些向量数乘常数或相加后仍等于0,那么子空间S的基和维数是怎样的?
V1+V2+V3+V4=0,子空间S是某个矩阵A的零空间,(Av=0)这个零空间属于怎样的矩阵呢?从前面那个等式可以发现,这个矩阵即A=[1,1,1,1]。因此,子空间S等价于矩阵A的零空间。A是一个秩1矩阵,零空间维数为n-r=4-1=3。
A的零空间的一组基即特殊解,可以先找到自由变量(第二,三,四列),然后赋特殊值得到一组基,维数为3,如下:
A的列空间属于1维空间
A的行空间的维度与列空间相同是1维
A的左零空间是零组合,一个点的维即0维。0维空间没有任何向量,此最小子空间的基是一个空集。
1+3=4,1+0=1。

小世界图,引出图论和线性代数的关系
图是结点和边的集合,边连通各个结点。比如一个5个点6条边的图可以用一个5×6的矩阵完全表示。一个有趣的问题是:一个由很多结点和很多条边组成的图,最大的两点距离是多少?有研究表明,只需要6步,这也是小世界的名称的来源,下讲会更多讲解

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值