矩阵论——矩阵空间

之前碰到的所有向量空间,都是 n n n 维的实数空间,现在我们将矩阵当成向量,比如说将 3 × 3 3\times 3 3×3 的矩阵看作向量,这相当于从原来的 n n n 维为扩展到 n × n n\times n n×n 维,那么明明是矩阵为什么可以看成是向量呢?因为矩阵也服从向量空间的运算,向量能相加,矩阵也能相加;向量能数乘,矩阵也可以数乘;向量可以线性组合,矩阵也可以线性组合。所以说矩阵也可以当成向量来生成空间,这个空间就是矩阵空间。

1. 矩阵空间的基

假设所有 3 × 3 3\times 3 3×3 的矩阵组成的空间,我们记为矩阵空间 M M M ,则矩阵空间 M M M 的一组基为
在这里插入图片描述

矩阵空间 R 3 × 3 R^{3\times 3} R3×3 内的任一向量可以表示为
A = ( a i j ) 3 × 3 = ∑ i , j = 1 3 a i j E i j \boldsymbol{A}=(a_{ij})_{3\times 3}=\sum_{i,j=1}^{3}a_{ij}\boldsymbol{E}_{ij} A=(aij)3×3=i,j=13aijEij

由于 E i j ( i , j = 1 , 2 , ⋯   , n ) \boldsymbol{E}_{ij}(i,j=1,2,\cdots ,n) Eij(i,j=1,2,,n) 线性无关,则矩阵空间 M M M 的维数为 d i m M = 3 × 3 = 9 dimM=3\times 3=9 dimM=3×3=9


2. 矩阵空间的子空间

比如说所有 3 × 3 3\times 3 3×3 的矩阵组成的空间,我们记为矩阵空间 M M M ,那么 M M M 的子空间有:

  1. 所有上三角矩阵(upper triangular matrix)组成的空间 U U U
  2. 所有的对称矩阵(symmetric matrix)组成的空间 S S S
  3. 所有的对角矩阵(diagonal matrix)组成的空间 D D D (对角矩阵是上三角阵和对称阵的交集)。

因为两个上三角阵相加还是上三角阵,两个对称阵相加还是对称阵,两个对角阵相加还是对角阵。

M M M 空间的维数是9,9个基分别为:
在这里插入图片描述

S S S 空间的维数是6,6个基分别为:
在这里插入图片描述
U U U 空间的维数也是6,基分别为:
在这里插入图片描述
通过将 U U U S S S 进行组合,我们还可以得到其他子空间:

:对称阵空间 S S S 和上三角阵空间 U U U 的交集 S ∩ U S\cap U SU 得到的对角阵空间 D D D ,其维数是3维;

:对称阵空间 S S S 和上三角阵空间 U U U 的和集 S + U S + U S+U 可以得到所有3*3矩阵,因此这个S+U构成的空间维度是9。

注意:并集组成的集合不是子空间!!!

这里我们可以发现 d i m ( S ) + d i m ( U ) = d i m ( S ∩ U ) + d i m ( S + U ) dim(S)+dim(U)=dim(S\cap U)+dim(S+U) dim(S)+dim(U)=dim(SU)+dim(S+U),即 S S S 的维度加上 U U U 的维度等于它们交的维度加上它们和的维度。


2. 矩阵的值域(列空间)

定义:设 A = ( a i j ) ∈ R m × n \boldsymbol{A}=(a_{ij})\in \boldsymbol{R}^{m\times n} A=(aij)Rm×n ,以 a i ( i = 1 , 2 , ⋯   , n ) \boldsymbol{a}_{i}(i=1,2,\cdots ,n) ai(i=1,2,,n) 表示 A \boldsymbol{A} A 的第 i i i 个列向量,称子空间 L ( a 1 , a 2 , ⋯   , a n ) L(\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots ,\boldsymbol{a}_{n}) L(a1,a2,,an)矩阵 A \boldsymbol{A} A 的值域(列空间),记为
R ( A ) = L ( a 1 , a 2 , ⋯   , a n ) R(\boldsymbol{A})=L(\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots ,\boldsymbol{a}_{n}) R(A)=L(a1,a2,,an)


R ( A ) R(\boldsymbol{A}) R(A) 还可以这样生成:令 x = ( ξ 1 , ξ 1 , ⋯   , ξ n ) T ∈ R n \boldsymbol{x}=\left ( \xi _{1},\xi _{1},\cdots ,\xi _{n} \right )^{T} \in \boldsymbol{R}^{n} x=(ξ1,ξ1,,ξn)TRn ,则
A x = ( a 1 , a 2 , ⋯   , a n ) ( ξ 1 , ξ 2 , ⋯   , ξ n ) T = ξ 1 a 1 + ξ 2 a 2 + ⋯ + ξ n a n \boldsymbol{A}\boldsymbol{x}=(\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots ,\boldsymbol{a}_{n})\left ( \xi _{1},\xi _{2},\cdots ,\xi _{n} \right )^{T}=\xi _{1}\boldsymbol{a}_{1} + \xi _{2}\boldsymbol{a}_{2} + \cdots+ \xi _{n}\boldsymbol{a}_{n} Ax=(a1,a2,,an)(ξ1,ξ2,,ξn)T=ξ1a1+ξ2a2++ξnan

这表明 A x \boldsymbol{A}\boldsymbol{x} Ax A \boldsymbol{A} A 的列向量组的线性组合。反之,若 y \boldsymbol{y} y A \boldsymbol{A} A 的列向量组的线性组合,即
y = ξ 1 a 1 + ξ 2 a 2 + ⋯ + ξ n a n = A x \boldsymbol{y}=\xi _{1}\boldsymbol{a}_{1} + \xi _{2}\boldsymbol{a}_{2} + \cdots+ \xi _{n}\boldsymbol{a}_{n}=\boldsymbol{A}\boldsymbol{x} y=ξ1a1+ξ2a2++ξnan=Ax

可见,所有乘积 A x \boldsymbol{A}\boldsymbol{x} Ax 之集合 { A x   ∣   x ∈ R n } \left \{ \boldsymbol{A}\boldsymbol{x}\: |\: \boldsymbol{x}\in \boldsymbol{R}^{n} \right \} {AxxRn} A \boldsymbol{A} A 的列向量组的线性组合的集合 L ( a 1 , a 2 , ⋯   , a n ) L(\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots ,\boldsymbol{a}_{n}) L(a1,a2,,an) 相同,从而有
R ( A ) = { A x   ∣   x ∈ R n } R(\boldsymbol{A})=\left \{ \boldsymbol{A}\boldsymbol{x}\: |\: \boldsymbol{x}\in \boldsymbol{R}^{n} \right \} R(A)={AxxRn}

同样可以定义 A T \boldsymbol{A}^{T} AT 的值域(行空间)为:
R ( A T ) = { A T x   ∣   x ∈ R m } ⊂ R n R(\boldsymbol{A}^{T})=\left \{ \boldsymbol{A}^{T}\boldsymbol{x}\: |\: \boldsymbol{x}\in \boldsymbol{R}^{m} \right \} \subset \boldsymbol{R}^{n} R(AT)={ATxxRm}Rn

r a n k A = d i m R ( A ) = d i m R ( A T ) rank\boldsymbol{A}=dimR(\boldsymbol{A})=dimR(\boldsymbol{A}^{T}) rankA=dimR(A)=dimR(AT)


矩阵的列空间与线性方程组的联系

线性方程组
A x = b \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} Ax=b

其中, A ∈ R m × n \boldsymbol{A} \in \boldsymbol{R}^{m \times n} ARm×n x ∈ R n \boldsymbol{x}\in \boldsymbol{R}^{n} xRn b ∈ R m \boldsymbol{b}\in \boldsymbol{R}^{m} bRm 。我们想要知道方程组何时有解。

我们可以把矩阵 A \boldsymbol{A} A 拆成一系列列向量的组合, A = ( a 1 , a 2 , ⋯   , a n ) \boldsymbol{A}=(\boldsymbol{a}_{1},\boldsymbol{a}_{2},\cdots ,\boldsymbol{a}_{n}) A=(a1,a2,,an) ,同样, x = ( x 1 , x 2 , ⋯   , x n ) \boldsymbol{x}=(x_{1},x_{2},\cdots ,x_{n}) x=(x1,x2,,xn) ,那么上面的方程组可以表示为:
A x = x 1 a 1 + x 2 a 2 + ⋯ + x n a n \boldsymbol{A}\boldsymbol{x}=x_{1}\boldsymbol{a}_{1}+x_{2}\boldsymbol{a}_{2}+\cdots + x_{n}\boldsymbol{a}_{n} Ax=x1a1+x2a2++xnan

所以说,矩阵和列向量的相乘,就相当于矩阵的列向量的一个线性组合。这和矩阵的列空间的定义是相同的。也就是说,如果我们希望 A x = b \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} Ax=b 有解,也就是说向量 b \boldsymbol{b} b 应该存在于该子空间内。

例如:
假设 A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] \boldsymbol{A}=\begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3\\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} A=123411112345 ,则矩阵 A \boldsymbol{A} A 的列空间 R ( A ) R(\boldsymbol{A}) R(A) R 4 \boldsymbol{R}^{4} R4 的子空间, R ( A ) R(\boldsymbol{A}) R(A) 中的元素是矩阵 R ( A ) R(\boldsymbol{A}) R(A) 中列的线性组合。首先 A x = b \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} Ax=b 不是对所有的 b \boldsymbol{b} b 均有解,因为三个向量的组合不可能覆盖整个四维空间。当且仅当向量 b \boldsymbol{b} b 是矩阵 R ( A ) R(\boldsymbol{A}) R(A) 中列的线性组合时方程组才有解。


3. 矩阵的核空间(零空间)

定义:设 A = ( a i j ) ∈ R m × n \boldsymbol{A}=(a_{ij})\in \boldsymbol{R}^{m\times n} A=(aij)Rm×n ,称集合 { x   ∣   A x = 0 } \left \{ \boldsymbol{x}\: |\: \boldsymbol{A}\boldsymbol{x}= \boldsymbol{0} \right \} {xAx=0} A \boldsymbol{A} A 的核空间(零空间),记为 N ( A ) N(\boldsymbol{A}) N(A) ,即
N ( A ) = { x   ∣   A x = 0 } N(\boldsymbol{A})=\left \{ \boldsymbol{x}\: |\: \boldsymbol{A}\boldsymbol{x}= \boldsymbol{0} \right \} N(A)={xAx=0}

显见 N ( A ) N(\boldsymbol{A}) N(A) 是齐次线性方程组 A x = 0 \boldsymbol{A}\boldsymbol{x}= \boldsymbol{0} Ax=0 的解空间,它是 R n \boldsymbol{R}^{n} Rn 的一个子空间。 A \boldsymbol{A} A 的核空间的维数称为 A \boldsymbol{A} A 零度,记为 n ( A ) n(\boldsymbol{A}) n(A) ,即

n ( A ) = d i m N ( A ) n(\boldsymbol{A})=dimN(\boldsymbol{A}) n(A)=dimN(A)


矩阵的零空间与线性方程组的联系

零空间是跟列空间完全不同的子空间, A \boldsymbol{A} A 的列空间关心的是什么样的 b \boldsymbol{b} b 使得 A x = b \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b} Ax=b有解,而 A \boldsymbol{A} A 的零空间则关心的是当 b \boldsymbol{b} b 为零向量,即 A x = 0 \boldsymbol{A}\boldsymbol{x}=\boldsymbol{0} Ax=0 时所有的解 x \boldsymbol{x} x;其中, A ∈ R m × n \boldsymbol{A} \in \boldsymbol{R}^{m \times n} ARm×n x ∈ R n \boldsymbol{x}\in \boldsymbol{R}^{n} xRn 0 ∈ R m \boldsymbol{0}\in \boldsymbol{R}^{m} 0Rm ,是个向量 。也就是说,列空间关心的是 b \boldsymbol{b} b ,而零空间关心的是 b = 0 \boldsymbol{b}= \boldsymbol{0} b=0 时的所有解向量 x \boldsymbol{x} x

矩阵的零空间就是使得 A x = 0 \boldsymbol{A}\boldsymbol{x}=\boldsymbol{0} Ax=0 的所有解向量 x \boldsymbol{x} x 所构成的一个集合,这个零空间同时也是 R n \boldsymbol{R}^{n} Rn 里的一个子空间。

例如:
假设 A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] \boldsymbol{A}=\begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3\\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix} A=123411112345 ,其零空间是什么?首先可以肯定的是它是 R 3 \boldsymbol{R}^{3} R3 的一个子空间,注意到刚才的列空间是 R 4 \boldsymbol{R}^{4} R4 的子空间,不管矩阵 A \boldsymbol{A} A 是多少,其零空间 N ( A ) N(\boldsymbol{A}) N(A) 一定包含零向量 [ 0 0 0 ] \begin{bmatrix} 0 \\ 0\\ 0 \end{bmatrix} 000 。此例中,易得到其他的解向量 x \boldsymbol{x} x [ 1 1 − 1 ] \begin{bmatrix} 1 \\ 1\\ -1 \end{bmatrix} 111 ,推广一下可得所有形如 c [ 1 1 − 1 ] c\begin{bmatrix} 1 \\ 1\\ -1 \end{bmatrix} c111 的向量都在 A \boldsymbol{A} A 的零空间里,这个零空间是 R 3 \boldsymbol{R}^{3} R3 中的一条两端延伸且过原点的直线。


关于解是否能构成向量空间

零空间是向量空间吗?很显然是的,因为假设 b = 0 \boldsymbol{b}= \boldsymbol{0} b=0 时方程组有两个解 x 1 \boldsymbol{x}_{1} x1 x 2 \boldsymbol{x}_{2} x2 ,那么它们的线性组合仍然是方程组的解,即 A x 1 = 0 \boldsymbol{A}\boldsymbol{x}_{1}=0 Ax1=0 A x 2 = 0 \boldsymbol{A}\boldsymbol{x}_{2}=0 Ax2=0 ,那么 A ( c 1 x 1 + c 2 x 2 ) = 0 \boldsymbol{A}(c_1\boldsymbol{x}_{1}+c_2\boldsymbol{x}_{2})=0 A(c1x1+c2x2)=0 ,所以 A x = 0 \boldsymbol{A}\boldsymbol{x}=\boldsymbol{0} Ax=0 的解构成一个子空间。

我们看一下 b \boldsymbol{b} b 不等于 0 \boldsymbol{0} 0 的情况,假设现有 [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ 1 2 3 4 ] \begin{bmatrix} 1 & 1 & 2\\ 2 & 1 & 3\\ 3 & 1 & 4\\ 4 & 1 & 5 \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} 123411112345x1x2x3=1234 ,如果随便取 b \boldsymbol{b} b ,很有可能方程无解,但这里给出的 b \boldsymbol{b} b 很简单,有些解一下子就能看出来,但我们不关心那些解是什么,我们关心的是这些解构成向量空间吗?假设 x 1 \boldsymbol{x}_{1} x1 x 2 \boldsymbol{x}_{2} x2 是两个解,很显然 c 1 x 1 + c 2 x 2 c_1\boldsymbol{x}_{1}+c_2\boldsymbol{x}_{2} c1x1+c2x2 不再是方程的解,因此当 b \boldsymbol{b} b 不等于 0 \boldsymbol{0} 0 时,这些解就不构成向量空间了;或者我们通过零向量也可看出这些解不构成向量空间,在前面我们说所有的向量空间都必须包含零向量,不包含零向量的肯定不是向量空间,这里当 x = [ 0 0 0 ] \boldsymbol{x}=\begin{bmatrix} 0 \\ 0\\ 0 \end{bmatrix} x=000 时显然不能满足方程,因此这些解不构成向量空间。



参见:

  1. https://blog.csdn.net/xdfyoga1/article/details/36180861
  2. https://blog.csdn.net/xdfyoga1/article/details/37312451

  • 6
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值