矩阵转置相关公式_透析矩阵,由浅入深娓娓道来—高数-线性代数-矩阵

线性代数在科学领域有很多应用的场景,如下:

矩阵,是线性代数中涉及的内容,

线性代数是用来描述状态和变化的,而矩阵是存储状态和变化的信息的媒介,可以分为状态(静态)和变化(动态)信息来看待。

描述一个事物的状态需要在一个选好的坐标系(什么样的向量空间)中进行,所以矩阵所包含的信息从来都是成对出现(坐标值和坐标系)。而基就是坐标系的信息,可以将其拆分出来。

当把矩阵以动态信息来看待时,其信息的侧重点在于变化二字。这时的矩阵可以看做是一个方程。

通过矩阵内所描述的变化规则从一个状态变换到另一个状态。变换可以理解为事物本身的变化,也可以理解为坐标系的变化。

矩阵的本质:

探讨矩阵的本质的话,可以先看这篇文章:

理解矩阵(最通俗易懂的教程——高数-线性代数-矩阵

其思路概括来说如下:

  • 首先要有空间的概念,如果不考虑严谨的定义,你可以用我们熟知的二维或者三维空间来想象:里面有无穷多的点,通过某些动作,可以从一个点“移动”到另一个点,容纳运动是空间的本质特征。
  • 线性空间也是一种空间,线性空间是容纳向量对象运动的。如果选定了坐标系,那么一个向量可以用它在每个维度上的坐标值来表示,比如二维空间里可以表示为[x, y],三维空间可以表示为[x, y, z],更高维虽然无法想象,但仍然可以用类似的数学方式表示出来。
  • 向量共有两种形式,一种为列向量,一种为行向量。虽然我们可能比较习惯行向量,但在这里,我们默认使用列向量。比如[-1,2]就这样表示:
  • 我们可以通过某种运算,把空间里的一个点“移动”另一个位置。比如我们想把[-1,2]移动到[5,2],可以执行如下运算:
  • 上图中左边的这个变量,就是一个矩阵,所以矩阵是线性空间中运动(变换)的描述。

换言之,矩阵的乘法,本质是一种运动。但除此以外,还有另外一种理解方式。

我们知道,运动是相对的,把[-1,2]变成[5,2],除了“移动”,还可以通过变换坐标系的方式实现。也就是说,找到这样的一个坐标系,在那里,同样的一个向量可以表示为[5,2]。

在这个情况下,对上面那个矩阵相乘例子而言,里面的那个2x2方阵就可以理解为一个坐标系,在这个坐标系下,[-1,2]这个向量可以表示为[5,2]。

比如上面这个动图中,通过坐标系变化,把红色向量[0,1]、绿色向量[1,0]变成了[3,0]和[1,-2]。

因此,矩阵的实质就是将坐标整体线性变换

矩阵的基本定义:

  • 矩阵:有m*n个数排成m行n列的数表成为m行n列矩阵,简称m x n矩阵,记为A。
  • 负矩阵:-A称为矩阵A的负矩阵
  • 行矩阵:只有一行的矩阵称为行矩阵,又称为行向量;A=(a1 a2 ...an)
  • 列矩阵:只有一列的矩阵称为列矩阵,又称为列向量;
  • 同型矩阵:两个矩阵行数列数均相等,称他们为同型矩阵;
  • 相等: 若两个矩阵是同型矩阵,且它们的对应元素相等,成这两个矩阵相等。
  • 零矩阵:元素都是零的矩阵。注意:不同型的零矩阵是不同的。
  • 系数矩阵:线性方程组的系数构成的矩阵称为系数矩阵。
  • 方阵:当矩阵的行数与列数相等的时候,称之为方阵
  • 奇异矩阵:对应的行列
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值