线性代数导论20——克莱姆法则、逆矩阵、体积

本文介绍了线性代数中克莱姆法则、逆矩阵的计算方法及其在求解体积问题中的应用。通过克莱姆法则,可以表达矩阵解线性方程组的代数形式。同时,探讨了逆矩阵的求解公式,以及行列式如何表示几何体的体积,特别是在正交矩阵和长方体体积问题中的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是Gilbert Strang的线性代数导论课程笔记。课程地址: http://v.163.com/special/opencourse/daishu.html  
第二十课时:克莱姆法则、逆矩阵、体积
本文 介绍行列式的应用,行列式用一个数值就包含所有信息。

先回顾上讲的内容:行列式的代数余子式表达式:

求逆矩阵公式
A的求逆矩阵公式:A-1=(1/detA)*CT 。(C是由代数余子式组成的矩阵)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值