【线性代数】1.2矩阵的行列式与克莱姆法则

本文详细介绍了线性代数中的行列式概念,包括行列式的定义、性质、计算方法,特别是二阶和三阶行列式。此外,还探讨了余子式、代数余子式及其重要定理,并阐述了克莱姆法则在解决线性方程组问题中的应用。
摘要由CSDN通过智能技术生成

1.行列式的引入

用消元法解二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 , a 21 x 1 + a 22 x 2 = b 2. \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2=b_1,\\a_{21}x_1+a_{22}x_2=b_{2.}\end{array}\right. { a11x1+a12x2=b1,a21x1+a22x2=b2.
为消去未知数 x 2 x_2 x2,以 a 22 a_{22} a22 a 12 a_{12} a12分别乘上列方程的两端,然后两个方程相减,得
( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − a 12 b 2 \left(a_{11}a_{22}-a_{12}a_{21}\right)x_1=b_1a_{22}-a_{12}b_2 (a11a22a12a21)x1=b1a22a12b2
类似地,消去 x 1 x_1 x1,得
( a 11 a 22 − a 12 a 21 ) x 2 = b 2 a 11 − a 21 b 1 \left(a_{11}a_{22}-a_{12}a_{21}\right)x_2=b_2a_{11}-a_{21}b_1 (a11a22a12a21)x2=b2a11a21b1
( a 11 a 22 − a 12 a 21 ) ≠ 0 \left(a_{11}a_{22}-a_{12}a_{21}\right)\neq0 (a11a22a12a21)=0时,求得方程组 (1)的解为
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = b 2 a 11 − a 21 b 1 a 11 a 22 − a 12 a 21 . x_1=\frac{b_1a_{22}-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}},x_2=\frac{b_2a_{11}-a_{21}b_1}{a_{11}a_{22}-a_{12}a_{21}}. x1=a11a22a12a21b1a22a12b2,x2=a11a22a12a21b2a11a21b1.
若记
D = ∣ a 11 a 12 a 21 a 22 ∣ ,    D 1 = ∣ b 1 a 12 b 2 a 22 ∣ ,    D 2 = ∣ a 11 b 1 a 21 b 2 ∣ D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},\;D_1=\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix},\;D_2=\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix} D=a11a21a12a22,D1=b1b2a12a22,D2=a11a21b1b2
那么(2)式可写成
x 1 = D 1 D = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 21 a 22 ∣ ,    x 2 = D 2 D = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ x_1=\frac{D_1}D=\frac{\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}},\;x_2=\frac{D_2}D=\frac{\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}} x1=DD1=a11a21a12a22b1b2a12a22,x2=DD2=a11a21a12a22a11a21b1b2

2.行列式

1.概念:不同行不同列元素乘积的代数和(共 n ! n! n!项)

n n n阶行列式
∣ a 11 a 12 ⋯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值