1.行列式的引入
用消元法解二元线性方程组
{ a 11 x 1 + a 12 x 2 = b 1 , a 21 x 1 + a 22 x 2 = b 2. \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2=b_1,\\a_{21}x_1+a_{22}x_2=b_{2.}\end{array}\right. {
a11x1+a12x2=b1,a21x1+a22x2=b2.
为消去未知数 x 2 x_2 x2,以 a 22 a_{22} a22与 a 12 a_{12} a12分别乘上列方程的两端,然后两个方程相减,得
( a 11 a 22 − a 12 a 21 ) x 1 = b 1 a 22 − a 12 b 2 \left(a_{11}a_{22}-a_{12}a_{21}\right)x_1=b_1a_{22}-a_{12}b_2 (a11a22−a12a21)x1=b1a22−a12b2
类似地,消去 x 1 x_1 x1,得
( a 11 a 22 − a 12 a 21 ) x 2 = b 2 a 11 − a 21 b 1 \left(a_{11}a_{22}-a_{12}a_{21}\right)x_2=b_2a_{11}-a_{21}b_1 (a11a22−a12a21)x2=b2a11−a21b1
当 ( a 11 a 22 − a 12 a 21 ) ≠ 0 \left(a_{11}a_{22}-a_{12}a_{21}\right)\neq0 (a11a22−a12a21)=0时,求得方程组 (1)的解为
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = b 2 a 11 − a 21 b 1 a 11 a 22 − a 12 a 21 . x_1=\frac{b_1a_{22}-a_{12}b_2}{a_{11}a_{22}-a_{12}a_{21}},x_2=\frac{b_2a_{11}-a_{21}b_1}{a_{11}a_{22}-a_{12}a_{21}}. x1=a11a22−a12a21b1a22−a12b2,x2=a11a22−a12a21b2a11−a21b1.
若记
D = ∣ a 11 a 12 a 21 a 22 ∣ , D 1 = ∣ b 1 a 12 b 2 a 22 ∣ , D 2 = ∣ a 11 b 1 a 21 b 2 ∣ D=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix},\;D_1=\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix},\;D_2=\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix} D=∣∣∣∣a11a21a12a22∣∣∣∣,D1=∣∣∣∣b1b2a12a22∣∣∣∣,D2=∣∣∣∣a11a21b1b2∣∣∣∣
那么(2)式可写成
x 1 = D 1 D = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 21 a 22 ∣ , x 2 = D 2 D = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ x_1=\frac{D_1}D=\frac{\begin{vmatrix}b_1&a_{12}\\b_2&a_{22}\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}},\;x_2=\frac{D_2}D=\frac{\begin{vmatrix}a_{11}&b_1\\a_{21}&b_2\end{vmatrix}}{\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}} x1=DD1=∣∣∣∣a11a21a12a22∣∣∣∣∣∣∣∣b1b2a12a22∣∣∣∣,x2=DD2=∣∣∣∣a11a21a12a22∣∣∣∣∣∣∣∣a11a21b1b2∣∣∣∣
2.行列式
1.概念:不同行不同列元素乘积的代数和(共 n ! n! n!项)
n n n阶行列式
∣ a 11 a 12 ⋯