leetcode Convert Sorted List to Binary Search Tree

本文详细介绍了如何将一个已排序的链表转换为一个高度平衡的二叉搜索树,包括算法实现和代码示例。

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5

The problem is quite interesting when limiting memory to O(1), and time complexity to O(n). In that way, extra array is forbidden. So

When there is only one node A, mid = A, NULL<-mid->NULL

When there are two node A, A+1, mid = A, NULL<-mid->A+1

When there are three node A, A+1, A+2, mid = A+1, A<-A+1->A+2

....

After building the tree, the pointer moves to the end. The code is like: 

 

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
 public:
  TreeNode* BuildTree(ListNode*& head, int start, int end) {
      if (start > end) 
        return NULL;
      int mid = start + (end - start) / 2;
      
      TreeNode* lChild = BuildTree(head, start, mid - 1);
      TreeNode* parent = new TreeNode(head->val);
      parent->left = lChild;
      head = head->next;
      TreeNode* rChild = BuildTree(head, mid + 1, end);
      parent->right = rChild;
      return parent;
  }
  TreeNode *sortedListToBST(ListNode *head) {
    // Note: The Solution object is instantiated only once and is reused by each test case.
    ListNode* p = head;
    int len = 0; 
    while (p != NULL) {
        len++;
        p = p->next;
    }
    return BuildTree(head, 0, len-1);
  }
};


I once wrote the function like:

TreeNode* BuildTree(ListNode* head, int start, int end)

which got wrong answer. 

 

Python Version:

class Solution:
    def CountLen(self, head):
        sum = 0
        while (head):
            sum += 1
            head = head.next
        return sum

    def ConvertToBST(self, head, start, end):
        if (start > end or head == None):
            return None, head
        elif (start == end):
            root = TreeNode(head.val)
            head = head.next
            return root,head
        else:
            mid = start + ((end-start)//2)
            leftChild,head = self.ConvertToBST(head, start, mid-1)
            root = TreeNode(head.val)
            head = head.next
            rightChild,head = self.ConvertToBST(head, mid+1, end)
            root.left = leftChild
            root.right = rightChild
            return root,head

    def sortedListToBST(self, head):
        lens = self.CountLen(head)
        root, head = self.ConvertToBST(head, 0, lens-1)
        return root

 

在自媒体领域,内容生产效率与作品专业水准日益成为从业者的核心关切。近期推出的Coze工作流集成方案,为内容生产者构建了一套系统化、模块化的创作支持体系。该方案通过预先设计的流程模块,贯穿选题构思、素材整理、文本撰写、视觉编排及渠道分发的完整周期,显著增强了自媒体工作的规范性与产出速率。 经过多轮实践验证,这些标准化流程不仅精简了操作步骤,减少了机械性任务的比重,还借助统一的操作框架有效控制了人为失误。由此,创作者得以将主要资源集中于内容创新与深度拓展,而非消耗于日常执行事务。具体而言,在选题环节,系统依据实时舆情数据与受众偏好模型生成热点建议,辅助快速定位创作方向;在编辑阶段,则提供多套经过验证的版式方案与视觉组件,保障内容呈现兼具美学价值与阅读流畅性。 分发推广模块同样经过周密设计,整合了跨平台传播策略与效果监测工具,涵盖社交网络运营、搜索排序优化、定向推送等多重手段,旨在帮助内容突破单一渠道局限,实现更广泛的受众触达。 该集成方案在提供成熟模板的同时,保留了充分的定制空间,允许用户根据自身创作特性与阶段目标调整流程细节。这种“框架统一、细节可变”的设计哲学,兼顾了行业通用标准与个体工作习惯,提升了工具在不同应用场景中的适应性。 从行业视角观察,此方案的问世恰逢其时,回应了自媒体专业化进程中对于流程优化工具的迫切需求。其价值不仅体现在即时的效率提升,更在于构建了一个可持续迭代的创作支持生态。通过持续吸纳用户反馈与行业趋势,系统将不断演进,助力从业者保持与行业发展同步,实现创作质量与运营效能的双重进阶。 总体而言,这一工作流集成方案的引入,标志着自媒体创作方法向系统化、精细化方向的重要转变。它在提升作业效率的同时,通过结构化的工作方法强化了内容产出的专业度与可持续性,为从业者的职业化发展提供了坚实的方法论基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值