ANN(Approximate Nearest Neighbor) 意为近似近邻搜索,即通过模型预计算,建立索引或图以便在线检索时通过剪枝或图检索从而加速检索过程,通常为非穷尽检索。目前常用的ANN 检索方式有 IVF, HNSW, BTree, IVF-PQ。
IVF
IVF(lnverted File)通过在模型预计算时将所有候选进行KMeans聚类,即检索距离最近的m个聚类蔟,遍历这m个聚类蔟下所有候选,计算得出距离最近的topk候选。扩大IVF检索覆盖范围或增加聚类数都可以提高检索精度,这也正是IVF-PQ以及BTree分别采用的思路。
HNSW
HNSW(Hierarchical Navigable Small World) 类似于跳表的思想,在构建阶段,在搜索时,从最高层的入点出发,逐层贪心搜索距离query vec最近的点,当一层达到收敛后,进入下一层,直至到达底层,在底层L0中,包含候选集中所有的点,即全量数据图网络。在L0层中开始深度优先搜索距离query vec最近的候选点集,每次将距离query vec最近的点加入候选点集中,若候选点集已满,则弹出最远候选点,直至候选点集收敛。
微软、FB、阿里的相关论文(DistANN,NSG,SSG)对HNSW的性能做了大量的研究与改进,经验上来说,召回的topk比较小的情况下(例如召回只有几百的情况下),HNSW的召回率较高,因此HNSW更适合推荐场景;但如果召回的topk比较大的情况下(例如召回达到2000左右的规模),IVF更适合一些