为什么ROC不受样本不均衡问题的影响、Sensitivity、Specificity、AP和mAP

为什么ROC不受样本不均衡问题的影响

在对分类模型的评价标准中,除了常用的错误率,精确率,召回率和F1度量外,还有两类曲线:ROC曲线和PR曲线,它们都是基于混淆矩阵,在不同分类阈值下两个重要量的关系曲线。

在二分类问题中,分类器将一个实例分类为正样本和负样本,全部分类样本可以用一个混淆矩阵来表示。混淆矩阵有四个分类,如下表:

è¿éåå¾çæè¿°

对于PR曲线,它是精确率(precision,简称P)和召回率(Recall,简称R)的关系曲线,计算式如下:

对于ROC曲线,它是“真正例率”(True Positive Rate, 简称TPR),横轴是“假正例率”(False Positive Rate,简称FPR)的关系曲线,计算式如下:

真正例率是在所有正例中,你将多少预测为了正例,这是你希望最大化的,也可以看作收益;假正例率是在所有负例中,你又将多少预测为了正例,这是你希望最小化的,也可以看作代价。

从公式(2)和表中可以看出,TPR考虑的是第一行,实际都是正例,FPR考虑的是第二行,实际都是负例。因此,在正负样本数量不均衡的时候,比如负样本的数量增加到原来的10倍,那TPR不受影响,FPR的各项也是成比例的增加,并不会有太大的变化。因此,在样本不均衡的情况下,同样ROC曲线仍然能较好地评价分类器的性能,这是ROC的一个优良特性,也是为什么一般ROC曲线使用更多的原因。

而看公式(1)和表,精确率P考虑的是第一列,实际中包括正例和负例,因此,正负样本数量的变化会引起该值的变化,进而影响PR曲线对分类器的评价。

下图是ROC曲线和PR曲线的对比:

a,c为ROC曲线,b,d为PR曲线。(a)和(b)展示的是分类其在原始测试集(正负样本分布平衡)的结果,(c)(d)是将测试集中负样本的数量增加到原来的10倍后,分类器的结果,可以明显的看出,ROC曲线基本保持原貌,而PR曲线变化较大。


ROC AUC Sensitivity Specificity

Precision = TP/(Labeled as P)=TP/(TP+FP)

Recall = TP/(Groundtruth as P)=TP/(TP+FN)

AUC x = False Positive Rate = FP/(Groundtruth as N) = FP/(TN+FP) 

AUC y = True Positive Rate = TP/(Groundtruth as P) = TP/(TP+FN) = Recall = Sensitivity (敏感性)

Specificity(专一性)  =  True Negative rate = TN/(Groundtruth as N) = TN/(TN+FP)=1-FPR


AP和mAP

AP

  • AP也是对所有图片内的某一类来说的,对不同召回率点上的精度进行平均(即PR曲线下的面积)
  • 分类任务的AP就是P—R曲线下的面积,我们需要做的就是根据不同的置信度阈值 (p_threshold),计算出这模型得到的对某个类别的(R,P),然后作出P—R曲线,并求解面积,就能得到分类模型对该类别的AP。

Mean Average Percision, mAP

  • mAP是针对多类来说的
  • mAP:多个物体类别的AP的平均
  • mAP的对象是所有类的所有图片,衡量的是学出的模型在所有类别上的好坏。
    计算如下所示,其中C为类别数目.

检测任务中的AP与AP@50, AP@75

在检测任务中,什么叫检测到的结果是true positive还是false positive?这里需要一个评判标准:
如果检测框与groud-truth框的IOU区域大于某个阈值,我们就可以认为是true positive了
如果IoU阈值=0.5,则为AP@50,
如果IoU阈值=0.75,则为 AP@75,以此类推
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值