Sklearn TFIDF中文计算问题以及解决方法

本文档描述了在使用sklearn的TF-IDF工具时遇到的中文处理问题,即输入中文时被忽略。通过分析示例代码,发现问题在于analyzer参数设置。解决方案是修改初始化函数,将analyzer参数从默认的'word'更改为(lambda s: s.split()),以确保正确处理中文字符串。此外,还讨论了其他可能的解决方案,如使用str.split或unicode.split,但存在与Unicode处理相关的复杂性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我在使用sklearn中的ITIDF工具,想来这是在文本处理中常用的有个现成的工具一定是极好的。但是网上查了下代码试了下并没有得到跟他们一样的结果。现象是这样的,凡是输入的是中文就直接被忽略掉了,如果全是中文就直接空输入了。当然,前提已经排除掉是编码或者unicode的错误了。

网上搜到的代码参考:

from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
if __name__ == "__main__":
    corpus=[
            u'我 来到 北京 清华大学',#第一类文本切词后的结果,词之间以空格隔开
            u'他 来到 了 网易 杭研 大厦',#第二类文本的切词结果
            u'小明 硕士 毕业 与 中国 科学院',#第三类文本的切词结果
            u'我 爱 北京 天安门'
           ]#第四类文本的切词结果
    vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
    transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
    x = vectorizer.fit_transform(corpus)
    l=vectorizer.get_feature_names()
    for u

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值