POJ3984 迷宫问题【BFS】

 

迷宫问题

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 25795 Accepted: 15019

 

Description

定义一个二维数组:

int maze[5][5] = {

	0, 1, 0, 0, 0,

	0, 1, 0, 1, 0,

	0, 0, 0, 0, 0,

	0, 1, 1, 1, 0,

	0, 0, 0, 1, 0,

};


它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。

Input

一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。

Output

左上角到右下角的最短路径,格式如样例所示。

Sample Input

0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

Sample Output

(0, 0)
(1, 0)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(2, 4)
(3, 4)
(4, 4)

 

问题链接POJ3984 迷宫问题

 

问题简述:参见上述链接。

问题分析

  迷宫问题是一个经典的搜索问题,如果是求出一个解,问题就简单很多,通常用DFS来实现。然而,本问题是求路径最短的解,即步数最少的解,就需要用BFS了。

程序说明

  使用C语言编写程序的话,处理起来略微复杂一些,需要另外写一个程序。

  这里使用C++语言编程,并且使用STL的队列queue,程序简洁。

  几个要点说明如下:

  1.宏定义 使用宏定义可以增强程序的通用性。类似的问题可以通过修改宏定义来实现,而不需要修改程序。在C++程序中,一般不使用宏定义,而使用常量。

  2.方向数组 使用方向数组后,各个方向的试探的程序就会变得简洁了。

  3.父节点矩阵 在节点搜索过程中,使用父节点矩阵(二维数组)father[][]。其目的是保证搜索到结果时,能够方便地输出结果,否则很难处理。father[][]中,每个元素都指向其父节点。

  4.避免重复搜索 将搜索过的节点设置为“墙”,可以避免重复搜索,也能够简化程序逻辑。

  5.设置边界 通过设置边界,可以免去矩阵(二维数组)的边界判断,简化了程序逻辑。由于增加边界使得数组下标做了映射,在输出结果时需要做相应的调整。

 

AC的C++语言程序如下:

 

/* POJ3984 迷宫问题 */

#include <cstdio>
#include <queue>

using namespace std;

#define MAXN 5

#define STARTROW 1
#define STARTCOL 1
#define ENDROW MAXN
#define ENDCOL MAXN

#define DIRECTSIZE 4

struct direct {
    int drow;
    int dcol;
} direct[DIRECTSIZE] = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};

int maze[MAXN+2][MAXN+2];

struct node {
    int row;
    int col;
};

node father[MAXN+2][MAXN+2];

queue<node> q;

void print_result()
{
    node path[MAXN*MAXN];
    int count = 0;

    // 逆序搜索,放入路径数组中
    path[count].row = ENDROW;
    path[count].col = ENDCOL;
    for(;;) {
        if(path[count].row == STARTROW && path[count].col == STARTCOL)
            break;

        path[count+1] = father[path[count].row][path[count].col];
        count++;
    }

    // 顺序输出结果
    while(count >= 0) {
        printf("(%d, %d)\n", path[count].row-1, path[count].col-1);

        count--;
    }
}

void bfs()
{
    node start; // 设置起始节点
    start.row = STARTROW;
    start.col = STARTCOL;
    q.push(start);

    while(!q.empty()) {
        node front = q.front(); q.pop();
        if (front.row == ENDROW && front.col == ENDCOL) {
            print_result();
            return;
        }
        for(int i=0; i<DIRECTSIZE; i++) {
            int nextrow = front.row + direct[i].drow;
            int nextcol = front.col + direct[i].dcol;
            if(maze[nextrow][nextcol] == 0) {
                father[nextrow][nextcol] = front;
                node v;
                v.row = nextrow;
                v.col = nextcol;
                q.push(v);
            }
        }

        maze[front.row][front.col] = 1; // 搜索过的节点不再搜索
    }
}

int main(void)
{
    int i, j;
    for(i=0; i<MAXN+2; i++) {
        maze[0][i] = 1;
        maze[MAXN+1][i] = 1;
        maze[i][0] = 1;
        maze[i][MAXN+1] = 1;
    }

    // 输入数据
    for(i=1; i<=MAXN; i++)
        for(j=1; j<=MAXN; j++)
            scanf("%d", &maze[i][j]);

    // 广度优先搜索
    bfs(); // 开始搜索

    return 0;
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

根据提供的引用内容,可以得知这是一道关于迷宫问题的题目,需要使用Java语言进行编写。具体来说,这道题目需要实现一个迷宫的搜索算法,找到从起点到终点的最短路径。可以使用广度优先搜索或者深度优先搜索算法来解决这个问题。 下面是一个使用广度优先搜索算法的Java代码示例: ```java import java.util.*; public class Main { static int[][] maze = new int[5][5]; // 迷宫地图 static int[][] dir = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; // 方向数组 static boolean[][] vis = new boolean[5][5]; // 标记数组 static int[][] pre = new int[5][5]; // 记录路径 public static void main(String[] args) { Scanner sc = new Scanner(System.in); for (int i = 0; i < 5; i++) { for (int j = 0; j < 5; j++) { maze[i][j] = sc.nextInt(); } } bfs(0, 0); Stack<Integer> stack = new Stack<>(); int x = 4, y = 4; while (x != 0 || y != 0) { stack.push(x * 5 + y); int t = pre[x][y]; x = t / 5; y = t % 5; } stack.push(0); while (!stack.empty()) { System.out.print(stack.pop() + " "); } } static void bfs(int x, int y) { Queue<Integer> qx = new LinkedList<>(); Queue<Integer> qy = new LinkedList<>(); qx.offer(x); qy.offer(y); vis[x][y] = true; while (!qx.isEmpty()) { int tx = qx.poll(); int ty = qy.poll(); if (tx == 4 && ty == 4) { return; } for (int i = 0; i < 4; i++) { int nx = tx + dir[i][0]; int ny = ty + dir[i][1]; if (nx >= 0 && nx < 5 && ny >= 0 && ny < 5 && maze[nx][ny] == 0 && !vis[nx][ny]) { vis[nx][ny] = true; pre[nx][ny] = tx * 5 + ty; qx.offer(nx); qy.offer(ny); } } } } } ``` 该代码使用了广度优先搜索算法,首先读入迷宫地图,然后从起点开始进行搜索,直到找到终点为止。在搜索的过程中,使用标记数组记录已经访问过的位置,使用路径数组记录路径。最后,使用栈来输出路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值