前言:
对偶(duality)是优化中的一个很重要的一点,以对偶问题的特性为根本的KKT条件,在很多优化问题的求解上行之有效。本文简要介绍对偶问题的基本概念和核心技术以及KKT求解的原理和方法。
什么是对偶?
对偶问题,就是将原问题(primal problem)转化为对偶问题(dual problem)然后在进行求解的方法。
详细解说对偶
1. 优化问题可以表示为:
minf0(x)
s.t.fi(x)<=0i=1,2,...n;hj(x)=0j=1,2,...m
如果n,m都是0,优化问题为无约束优化问题(无优化问题的对偶问题就是自己),如果n=0,则为等式约束问题。
优化问题的定义域 D为所有函数定义域的交集。
2.一个优化问题的对偶问题可以这样得到:
1.首先写出拉格朗日函数
L(x,u,v)=f0(x)+∑n1ui∗fi(x)+∑m1vjhj(x)
其中 u,v 为拉格朗日乘数,也叫对偶变量,顾名思义, u,v 是对偶问题中的变量。
2. 拉格朗日函数逐点对x求下确界得到对偶函数
g(u,v)=infx∈DL(x,u,v)=infx∈D