对偶和KKT条件

本文介绍了对偶问题的基本概念,通过拉格朗日乘数法建立原问题与对偶问题的联系。对偶问题在优化中具有重要地位,特别是当原问题为凸优化时,对偶问题的解决更为简便。KKT条件作为对偶性质的应用,是判断原问题与对偶问题解等价性的关键。文章阐述了KKT条件的四个必要条件及其在求解过程中的作用。
摘要由CSDN通过智能技术生成
前言:

对偶(duality)是优化中的一个很重要的一点,以对偶问题的特性为根本的KKT条件,在很多优化问题的求解上行之有效。本文简要介绍对偶问题的基本概念和核心技术以及KKT求解的原理和方法。

什么是对偶?

对偶问题,就是将原问题(primal problem)转化为对偶问题(dual problem)然后在进行求解的方法。

详细解说对偶
1. 优化问题可以表示为:

minf0(x)
s.t.fi(x)<=0i=1,2,...n;hj(x)=0j=1,2,...m

如果n,m都是0,优化问题为无约束优化问题(无优化问题的对偶问题就是自己),如果n=0,则为等式约束问题。

优化问题的定义域 D为所有函数定义域的交集。

2.一个优化问题的对偶问题可以这样得到:

1.首先写出拉格朗日函数
L(x,u,v)=f0(x)+n1uifi(x)+m1vjhj(x)
其中 u,v 为拉格朗日乘数,也叫对偶变量,顾名思义, u,v 是对偶问题中的变量。
2. 拉格朗日函数逐点对x求下确界得到对偶函数
g(u,v)=infxDL(x,u,v)=infxD

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值