对偶问题和KKT条件

对偶问题和KKT条件

在求解支持向量机时,我们遇到了求解约束问题
max ⁡ w , b ∣ ∣ w ∣ ∣ 2 (10) \max_{w,b}\mid\mid w\mid\mid^2 \tag{10} w,bmaxw2(10)

                             s.t.   y i ( w T x i + b ) ≥ 1 y_i(w^Tx_i+b)\geq 1 yi(wTxi+b)1

对偶问题

对于一般的约束优化问题
min ⁡ f ( x ) s . t . g i ( x ) ≤ 0 i = 1 , 2 , . . . , m η j ( x ) = 0 j = 1 , 2 , . . . , m \min f(x)\\ s.t. \qquad \qquad g_i(x)\leq 0 \qquad i=1,2,...,m \\ \quad \quad \quad \quad \qquad \eta_j(x)=0 \qquad j=1,2,...,m minf(x)s.t.gi(x)0i=1,2,...,mηj(x)=0j=1,2,...,m

拉格朗日函数为
L ( x , μ , λ ) = f ( x ) + ∑ i = 1 m μ i g i ( x ) + ∑ j = 1 m λ j η j ( x ) L(x,\mu ,\lambda)=f(x)+\sum_{i=1}^m\mu_ig_i(x)+\sum_{j=1}^m\lambda_j\eta_j(x) L(x,μ,λ)=f(x)+i=1mμigi(x)+j=1mλjηj(x)

其中 μ = ( μ 1 , μ 2 , . . . , μ m ) T , λ = ( λ 1 , λ 2 , . . . , λ m ) T \mu=(\mu_1,\mu_2,...,\mu_m)^T,\lambda=(\lambda_1,\lambda_2,...,\lambda_m)^T μ=(μ1,μ2,...,μm)T,λ=(λ1,λ2,...,λm)T拉格朗日乘子

定义拉格朗日对偶函数 Γ ( μ , λ ) \Gamma(\mu,\lambda) Γ(μ,λ) L ( x , μ , λ ) L(x,\mu ,\lambda) L(x,μ,λ)关于x的下确界(即最小值),
Γ ( μ , λ ) = inf ⁡ x ∈ D L ( x , μ , λ ) = inf ⁡ x ∈ D ( f ( x ) + ∑ i = 1 m μ i g i ( x ) + ∑ j = 1 m λ j η j ( x ) ) \Gamma(\mu,\lambda)=\inf_{x \in D}L(x,\mu,\lambda)=\inf_{x \in D}(f(x)+\sum_{i=1}^m\mu_ig_i(x)+\sum_{j=1}^m\lambda_j\eta_j(x)) Γ(μ,λ)=xDinfL(x,μ,λ)=xDinf(f(x)+i=1mμigi(x)+j=1mλjηj(x))
其拥有两个性质:

  1. 无论上述优化是否为凸优化问题,其对偶函数 Γ ( μ , λ ) \Gamma(\mu,\lambda) Γ(μ,λ)恒为凸函数,对偶问题为凸优化问题。
  2. μ ≥ 0 \mu \geq 0 μ0 时, Γ ( μ , λ ) \Gamma(\mu,\lambda) Γ(μ,λ)构成了上述优化问题最优值 p ∗ p^* p的下界

定义在满足 μ ≥ 0 \mu \geq 0 μ0 这个约束条件下对偶函数最大值的优化问题为拉格朗日对偶问题
max ⁡ Γ ( μ , λ ) s . t . μ ≥ 0 \qquad \qquad\max\Gamma(\mu,\lambda)\\ s.t. \quad \mu \geq 0 maxΓ(μ,λ)s.t.μ0

最优值为 d ∗ d^* d,强对偶性成立,则对偶问题的最优值即为主问题的最优解。

强对偶性要求:

  1. 主问题为凸优化
  2. 在主问题的可行集存在一点使所有的不等式约束的不等号成立。

KKT条件

f ( x ) , g i ( x ) , h j ( x ) f(x),g_i(x),h_j(x) f(x),gi(x),hj(x)一阶偏导连续, x ∗ , ( μ ∗ , λ ∗ ) x^*,(\mu^*,\lambda^*) x,(μ,λ)分别为主问题和对偶问题的最优解,若强对偶性成立,则 x ∗ , μ ∗ , λ ∗ x^*,\mu^*,\lambda^* x,μ,λ满足
{ ∇ x L ( x ∗ , μ ∗ , λ ∗ ) = ∇ f ( x ∗ ) + ∑ i = 1 m μ i ∗ ∇ g i ( x ∗ ) + ∑ j = 1 m λ j ∗ ∇ η j ( x ∗ ) g j ( x ∗ ) ≤ 0 h j ( x ∗ ) = 0 μ i ∗ ≥ 0 μ i ∗ g i ( x ∗ ) = 0 \begin{cases} \nabla_xL(x^*,\mu^*,\lambda^*)= \nabla f(x^*)+\sum_{i=1}^m\mu_i^*\nabla g_i(x^*)+\sum_{j=1}^m\lambda_j^*\nabla \eta_j(x^*) \\ g_j(x^*) \leq 0\\ h_j(x^*)=0 \\ \mu_i^* \geq 0\\ \mu_i^*g_i(x^*)=0 \end{cases} xL(x,μ,λ)=f(x)+i=1mμigi(x)+j=1mλjηj(x)gj(x)0hj(x)=0μi0μigi(x)=0

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值