Kruskal-Wallis单因子方差分析

Source: http://www.r-bloggers.com/kruskal-wallis-one-way-analysis-of-variance/

 

如果你在进行多个群组之间比较时,因为群组不满足正态分布而不能使用ANOVA多比较,那么你可以使用Kruskal-Wallis检验。该检验类似于前面两个样本的Wilcox检验。

假设你想看看以下4个数值集合的均值是否统计相似:

Group A: 1, 5, 8, 17, 16
Group B: 2, 16, 5, 7, 4
Group C: 1, 1, 3, 7, 9
Group D: 2, 15, 2, 9, 7

为使用Kruskal-Wallis的检验,只要简单地输入数据,然后将它们再组织成一个list:

a = c(1, 5, 8, 17, 16)
b = c(2, 16, 5, 7, 4)
c = c(1, 1, 3, 7, 9)
d = c(2, 15, 2, 9, 7)

dati = list(g1=a, g2=b, g3=c, g4=d)


现在我们直接使用kruskal.test()函数:

kruskal.test(dati)

        Kruskal-Wallis rank sum test

data:  dati 
Kruskal-Wallis chi-squared = 1.9217, df = 3, p-value = 0.5888


p-value大于0.05;并且检验统计的值1.9217也比chi-square的查表值低:

qchisq(0.950, 3)
[1] 7.814728


因此结论就是我们接受null hypothesis H0,即4个群组的均值统计相等。

 

### R语言ANOVA方差分析示例 #### 单因素方差分析One-Way ANOVA) 为了验证不同组之间是否存在显著差异,可以使用`aov()`函数来进行单因素方差分析。下面是一个简单的例子: ```r # 创建样本数据框 data <- data.frame( group = factor(rep(c("A", "B", "C"), each = 10)), value = c(rnorm(10, mean = 5), rnorm(10, mean = 7), rnorm(10, mean = 9)) ) # 执行单因素方差分析 model_one_way <- aov(value ~ group, data = data) # 输出模型摘要信息 summary(model_one_way)[^3] ``` 这段代码创建了一个包含三个水平(A、B 和 C)的数据集,并假设这些水平下的观测值分别来自不同的正态分布总体。通过调用`aov()`并传入公式`value ~ group`以及对应的数据框作为参数完成建模过程。 #### 双因素方差分析(Two-Way ANOVA) 当研究涉及两个分类自变量时,则可采用双因素设计。这里展示如何利用交互项评估两因子间是否有协同效应影响因变量的变化趋势。 ```r # 构造模拟数据 set.seed(123) df_two_way <- expand.grid(A = letters[1:3], B = LETTERS[1:2]) df_two_way$y <- c(rnorm(6, 8), rnorm(6, 12)) # 进行双因素方差分析 fit_two_way <- aov(y ~ A * B, df_two_way) # 展现结果概览 summary(fit_two_way) ``` 此部分先生成了具有六个组合级别的虚拟实验单位;接着定义响应变量`y`服从特定均数向量的随机误差结构;最后运用乘法运算符(*)引入交叉作用项进入回归表达式内。 #### 数据预处理的重要性 值得注意的是,在正式实施上述任一方差分析前,应当先行确认资料是否符合基本前提——即各群体内残差呈独立同分布特性且近似于标准常态曲线形状,同时整体变异程度保持一致。如果不满足这些条件,可能需要考虑其他非参数测试方法如Kruskal-Wallis H Test 或者尝试变换原始测量值得到更合适的输入形式[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值